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A B S T R A C T

In assignment problems, the rank distribution of assigned objects is often used to evaluate match quality.
Rank-minimizing (RM) mechanisms directly optimize for average rank. While appealing, a drawback is RM
mechanisms are not strategyproof. This paper investigates whether RM satisfies the weaker incentive notion of
non-obvious manipulability (NOM, Troyan and Morrill, 2020). I show any RM mechanism with full support —
placing positive probability on all rank-minimizing allocations — is NOM. In particular, uniform randomization
satisfies this condition. Without full support, whether an RM mechanism is NOM or not depends on the details
of the selection rule.
. Introduction

Many institutions make assignments by collecting agents’ ordinal
references over the possible alternatives and using them as an input
o a rule that outputs an assignment. Common examples include public
chool choice (Abdulkadiroğlu and Sönmez, 2003), medical residency
atching (Roth and Peranson, 1999), teacher assignment (Combe et al.,
022), course allocation (Budish and Cantillon, 2012; Budish and
essler, 2022), and refugee resettlement (Delacrétaz et al., 2023). A
atural metric to measure the success of the outcome is the rank
istribution: how many students get their first choice, how many get
heir second choice, and so on. Indeed, many school districts such as
hose in New York City and San Francisco publicly release statistics on
he ranks as a measure of the goodness of the match.

In the context of school choice specifically, most cities rely on either
ome version of Gale and Shapley’s celebrated deferred acceptance
echanism (Gale and Shapley, 1962) or on the so-called Boston mech-

nism (also sometimes called the immediate acceptance mechanism) to
etermine the assignment, and then evaluate the rank distribution pro-
uced by these mechanisms.2 However, given the importance placed
n the rank distribution, it is also natural to consider mechanisms that
ptimize directly for this objective. Indeed, Featherstone (2020) notes
hat Teach for America does exactly this, and uses the rank distribution
hen selecting its assignment. Featherstone (2020) is also one of the

ew papers that has undertaken a serious analysis of mechanisms based

∗ Correspondence to: P.O. Box 400182, Charlottesville, VA, 22904, United States of America.
E-mail address: troyan@virginia.edu.

1 I would like to thank Josue Ortega for comments on this paper, as well the Associate Editor and two anonymous referees, whose comments have greatly
mproved it.

2 There is another class of mechanisms based on the top trading cycles (TTC) algorithm of Shapley and Scarf (1974) that has been studied extensively in the
heoretical literature, but has found few adherents in practice. The only use of it in a real-world school choice setting that I am aware of is New Orleans, where
t was used for one year before being abandoned (Abdulkadiroǧlu et al., 2020).

3 Experimentally, Cerrone et al. (2024) find high rates of truth-telling in the non-strategyproof, but also not obviously manipulable, EADA mechanism.

explicitly on the rank distribution (a few other papers in this relatively
small but growing literature are discussed below).

While using mechanisms that select assignments based explicitly on
the rank distribution is naturally appealing, an important consideration
in any mechanism design problem is the incentives of the agents.
Indeed, one of the most appealing properties arguing for the use of DA-
based mechanisms is that they generally give agents strong incentives
to report their true preferences. On the other hand, Proposition 10 of
Featherstone (2020) shows that no ordinal assignment mechanism is
both rank-efficient (a refinement of Pareto efficiency that he defines
that takes into account the rank distribution) and strategyproof.

However, strategyproofness is a very demanding property, and just
because a mechanism can be manipulated does not mean that it is will
be manipulated. As part of a recent strand of literature on ‘‘obvious-
ness’’ in mechanism design, Troyan and Morrill (2020) introduce the
concept of non-obvious manipulability (NOM) as a way to relax strate-
gyproofness. They use their definition to taxonomize non-strategyproof
mechanisms into two classes: those that are obviously manipulable
(such as the Boston mechanism and pay-as-bid auctions) and thus are
likely to be easily manipulated in practice, and those that are non-
obviously manipulable (such as school-proposing DA, Kesten’s (2010)
efficiency-adjusted DA, and uniform price auctions) which, while for-
mally manipulable, have manipulations that are more difficult for
cognitively-limited agents to recognize and enact successfully.3
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In this paper, I consider a canonical assignment model in which
there is a set of agents (such as students) to be assigned to a set of
objects (such as schools), each of which has some fixed capacity. Agents
participate in a mechanism in which they report their preferences over
the objects. I consider the class of rank-minimizing (RM) mechanisms,
which take the reported agent preferences, and implement an assign-
ment that minimizes the average rank of the objects received. As there
can in general be many allocations that minimize the average rank at
a given preference profile, there are many possible RM mechanisms,
depending on how these ties are broken. Because the aforementioned
result of Featherstone (2020) implies that no RM mechanism is strate-
gyproof, I consider instead the weaker notion of NOM from Troyan and
Morrill (2020), and ask whether RM mechanisms satisfy this property.

An issue that arises in answering this question is that Troyan and
Morrill’s definition applies only to deterministic mechanisms that select
a single outcome at each preference profile. Because there may be many
allocations that minimize the average rank for a given preference pro-
file, it is more natural to model a mechanism as returning a probability
distribution over such allocations, and use an extension of NOM for
probabilistic mechanisms that was first proposed by Demeulemeester
and Pereyra (2022).

My main result (Theorem 1) shows that any RM mechanism with
full support is not obviously manipulable. A full support RM mech-
anism is one that places strictly positive probability weight on every
allocation that is rank-minimizing at the submitted preference profile.
For instance, one natural way to run an RM mechanism is to select
uniformly at random from the set of all RM allocations, which we call
the uniform rank-minimizing (URM) mechanism.4 This is a full support
mechanism, and so Theorem 1 implies that the URM mechanism is
NOM.

After showing Theorem 1, I investigate whether NOM extends be-
yond the full support assumption. This may be important, for instance,
to a designer who may not view all RM allocations as equal, but
rather wants to optimize some further objective within this class. For
instance, if a designer wants to advantage agents who belong to certain
groups within the class of RM allocations, she might want to place zero
probability on RM allocations where these agents do worse, and higher
probability on RM allocations where they do better.

Without full support, whether an RM mechanism is NOM will
depend on the details of the selection rule. Consider the following
mechanism, called the rank-minimizing serial dictatorship (RM-SD): Fix
n exogenous ordering of the agents, and ask the agents in this order
o choose their favorite (remaining) object that they could be assigned
t any RM allocation that is also consistent with the choices of the
arlier agents. This is a deterministic mechanism (it always produces
single deterministic allocation), and so does not have full support.
show that if each object has capacity 1 (what I call unit capacity
arkets), the RM-SD mechanism is NOM (Proposition 2). However, I
lso show that if some object has a capacity greater than 1, then the
M-SD mechanism is not NOM (Proposition 3). Further, even in unity
apacity markets, there are RM mechanisms without full support that
re not NOM, i.e., that are obviously manipulable (Proposition 4).5

In sum, the class of RM mechanisms is an appealing class of mech-
nisms for policymakers who are interested in the average rank as a
esirable objective. To the extent that the main shortcoming of the
M mechanism is its lack of strategyproofness, my results suggest that

his problem may be not so severe, so long as the mechanism has full
upport (e.g., the uniform RM mechanism). At the same time, another

4 This is a commonly used implementation of RM mechanisms in the
iterature; see, e.g., Nikzad (2022) or Ortega and Klein (2023).

5 An important additional distinction between these mechanisms and the
niform RM mechanism discussed in the previous paragraph is that the latter
reats all of the agents fairly. In particular, URM satisfies the fairness property
2

f equal treatment of equals (ETE) while the others do not. (
takeaway from my results is that designers who desire to use different
selection rules without full support should be prudent in doing so,
as this choice could have consequences for the manipulability of the
resulting mechanism. While more empirical work is needed to test
the theory, given my results and their other appealing properties, RM
mechanisms at the very least seem worthy of further consideration for
practical market design applications.

Related literature

Besides Featherstone (2020), who provides a detailed analysis of
rank efficiency criteria and related mechanisms and was discussed
above, there are only three other papers I am aware of in the economics
literature that analyze RM mechanisms.6 Nikzad (2022) studies large
markets, and provides an upper bound on the expected average rank
of rank-minimizing assignments. Sethuraman (2022) provides another
proof of the same result. Nikzad (2022) also shows that the uniform
RM mechanism is Bayesian incentive compatible when agent preference
rankings are also drawn uniformly at random.

Lastly, Ortega and Klein (2023) study the average rank of RM, DA,
and TTC in large markets, both theoretically and using simulations, and
find that RM outperforms DA and TTC on important dimensions such
as efficiency and fairness. They also use data from secondary school
admissions in Hungary to analyze the three mechanisms in an empirical
setting, and find similar support for RM mechanisms. The data is from
DA, a strategyproof mechanism, and they conduct their analysis of
RM mechanisms assuming the DA reports are truthful and that agents
will continue to report these truthful preferences in a counterfactual in
which they play RM, even though it is not strategyproof. They argue
for this approach as follows:

In our view, it is unclear whether students would misrepresent
their preferences in RM. The potential gains from manipulation
are tiny...and manipulations are risky and could lead to worse
outcomes... Furthermore, there is evidence of high truth-telling rates
in not obviously manipulable mechanisms (Cerrone et al., 2024).

My results can be seen as a formalization of this final point of Ortega
and Klein (2023).

2. Model

2.1. Preferences and allocations

There is a set of 𝑁 agents 𝐼 = {𝑖1,… , 𝑖𝑁} and a set of 𝑀 objects
𝑂 = {𝑜1,… , 𝑜𝑀}. Each object 𝑜𝑚 has a capacity 𝑞𝑚 which denotes
the maximum number of agents who can be assigned to it. I assume
that ∑𝑀

𝑚=1 𝑞𝑚 ≥ 𝑁 , which is common in school choice settings where
ll students must be offered a seat at a school, and is without loss of
enerality if one of the objects is an ‘‘outside option’’ that has enough
apacity for all agents. Each agent has a strict preference relation
𝑖 defined on the set of objects 𝑂, where 𝑜 ≻𝑖 𝑜′ denotes that agent 𝑖
trictly prefers object 𝑜 to object 𝑜′. I use 𝑜 ≿𝑖 𝑜′ when either 𝑜 ≻𝑖 𝑜′
r 𝑜 = 𝑜′. I will sometimes refer to ≻𝑖 as an agent’s type. I will also
rite ≻𝑖∶ 𝑜, 𝑜′,…, to denote an agent who has preferences such that
er favorite object is 𝑜, second favorite object is 𝑜′, and the rest of her
references can be arbitrary. The set 𝑖 is agent 𝑖’s preference domain,
hich consists of all strict rankings over 𝑂, and 𝐼 = 1×⋯×𝑁 is the

et of all preference profiles for all agents. I write ≻𝐼= (≻1,… , ≻𝑁 ) ∈ 𝐼

o denote a profile of preferences, one for each agent 𝑖1,… , 𝑖𝑁 , and

6 There is a large literature in mathematics and operations research that
as studied related problems, though they are generally not concerned with
ncentive issues, which are the focus of this paper. See Krokhmal and Pardalos
2009) for a survey.
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sometimes write ≻𝐼= (≻𝑖, ≻−𝑖) to separate 𝑖’s preferences ≻𝑖 from those
of the remaining agents, ≻−𝑖.

For an agent 𝑖 with type ≻𝑖, I define 𝑟𝑖(𝑜) = |{𝑜′ ∈ 𝑂 ∶ 𝑜′ ≿𝑖 𝑜}| to
be the rank of object 𝑜 according to 𝑖’s preferences; in other words,
𝑖’s favorite object has rank 1, 𝑖’s second-favorite object has rank 2, etc.
While the rank of an object also depends on an agent’s preferences ≻𝑖,
for readability, I suppress this from the notation. Also, notice that I
use the convention that lower numbers correspond to more preferred
objects.

A (deterministic) allocation 𝛼 ∶ 𝐼 → 𝑂 is a function that assigns
each agent to an object. I use 𝛼𝑖 to denote the object assigned to agent
𝑖 in allocation 𝛼. Any allocation must satisfy |{𝑖 ∈ 𝐼 ∶ 𝛼𝑖 = 𝑜}| ≤ 𝑞𝑚 for
all 𝑜𝑚 ∈ 𝑂, i.e., each object cannot be assigned to more agents than
its capacity. Let  be the set of all possible allocations. A random
allocation 𝜇 ∶  → [0, 1] is a probability distribution over ,
where ∑

𝛼∈ 𝜇(𝛼) = 1. It is necessary to introduce random allocations
to be able to deal with tie-breaking when there are many possible
deterministic allocations that minimize the average rank. Let  be the
set of random allocations.

Given a preference profile ≻𝐼 , denote the average rank of any
(deterministic) allocation 𝛼 (with respect to ≻𝐼 ) by7

̄(𝛼) = 1
𝑁

∑

𝑖∈𝐼
𝑟𝑖(𝛼𝑖),

and let

̄(≻𝐼 ) = {𝛼 ∈  ∶ �̄�(𝛼) ≤ �̄�(𝛼′) for all 𝛼′ ∈ }.

e call ̄(≻𝐼 ) the set of rank-minimizing deterministic allocations
with respect to ≻𝐼 ). Since  is finite, the set ̄(≻𝐼 ) is non-empty for all
≻𝐼 , though it may contain more than one element. A random allocation
𝜇 is a rank-minimizing random allocation (with respect to ≻𝐼 ) if 𝛼 ∉
̄(≻𝐼 ) implies 𝜇(𝛼) = 0; in other words, 𝜇 places positive probability
weight on only those deterministic allocations that are rank-minimizing
given the preference profile ≻𝐼 . Let ̄(≻𝐼 ) denote the set of rank-
minimizing random allocations. Notice that a rank-minimizing random
allocation may have 𝜇(𝛼) = 0 for some rank-minimizing (deterministic)
allocations 𝛼. When 𝜇(𝛼) > 0 for all 𝛼 ∈ ̄(≻𝐼 ), we call 𝜇 a full-
support rank-minimizing random allocation. This distinction will be
important for the results below.

2.2. Mechanisms

A mechanism is a function 𝜓 ∶ 𝐼 → . For each preference
profile ≻𝐼∈ 𝐼 , mechanism 𝜓 returns the random allocation 𝜓(≻𝐼
) ∈ . For any deterministic allocation 𝛼 ∈ , we write 𝜓(≻𝐼 )(𝛼)
to denote the probability that the random allocation 𝜓(≻𝐼 ) places on
𝛼. A mechanism 𝜓 is a rank-minimizing (RM) mechanism if 𝜓(≻𝐼 )
is a rank-minimizing random allocation for all ≻𝐼 . In other words,
𝜓(≻𝐼 ) places strictly positive probability only on allocations that are
rank-minimizing; formally, 𝜓(≻𝐼 ) ∈ ̄(≻𝐼 ) for all ≻𝐼∈ 𝐼 . If 𝜓(≻𝐼 )
is a further full-support rank-minimizing allocation for all ≻𝐼 , we say
that 𝜓 is a full-support RM mechanism. One natural tie-breaking
rule is to choose uniformly at random from the entire set ̄(≻𝐼 ) of
rank-minimizing deterministic allocations. This results in a particular
full-support RM mechanism that we call the uniform rank-minimizing
(URM) mechanism. Of course, other tie-breaking rules — both with
full support and without — are possible as well, and we discuss some
of these below.

7 Once again, �̄�(𝛼) depends on the preference profile ≻𝐼 , but this is
uppressed to avoid notational clutter.
3

o

.3. Non-obvious manipulability

Troyan and Morrill (2020) define non-obvious manipulability for
eterministic direct revelation mechanisms. Informally, a mechanism
s not obviously manipulable if, for every agent and every type ≻𝑖, and
very possible misreport ≻′

𝑖≠≻𝑖: (i) the worst-case outcome under ≻𝑖 is
eakly better than the worst-case outcome under ≻′

𝑖 and (ii) the best-
ase outcome under ≻𝑖 is weakly better than the best-case outcome
nder ≻′

𝑖 , where the worst and best cases are taken over all possible
reports of the other agents, ≻−𝑖. They provide a characterization of
non-obvious manipulations as those that cannot be recognized by a
cognitively limited agent, and classify mechanisms as either obviously
manipulable or not obviously manipulable in a wide variety of settings
that is in line with empirical evidence.

Formally, Troyan and Morrill (2020)’s definition applies only to
deterministic mechanisms, and so it must be extended to deal with the
probabilistic mechanisms used in this paper. The natural extension is to
simply treat Nature as another player, and calculate the worst and best
possible outcomes over both all possible reports of the other agents ≻−𝑖
s well as all possible realizations of random draws by Nature.8 This
xtension of Troyan and Morrill (2020) to random mechanisms first
ppears (to my knowledge) in Demeulemeester and Pereyra (2022),
nd the definition below is equivalent to theirs. When the mechanism
tself is deterministic, it reduces to the definition of Troyan and Morrill
2020).

Formally, given a random allocation 𝜇 ∈ , let supp(𝜇) = {𝛼 ∈  ∶
(𝛼) > 0} be the support of 𝜇 and define:

̄𝑖(𝜇) = max
𝛼∈supp(𝜇)

𝑟𝑖(𝛼𝑖)

𝜌𝑖(𝜇) = min
𝛼∈supp(𝜇)

𝑟𝑖(𝛼𝑖).

That is, �̄�𝑖(𝜇) is the rank of 𝑖’s least-preferred outcome among those
that are selected by 𝜇 with strictly positive probability (recall that a
higher rank corresponds to a worse school, and so in our context, the
worst-case is given by taking the maximum). Similarly, 𝜌𝑖(𝜇) is the rank
f agent 𝑖’s best outcome over all of the allocations in the support of 𝜇.

efinition 1. A mechanism 𝜓 is not obviously manipulable (NOM) if,
or any agent 𝑖 of type ≻𝑖 and any ≻′

𝑖≠≻𝑖, the following are true:

(i) max≻−𝑖 �̄�𝑖(𝜓(≻𝑖, ≻−𝑖)) ≤ max≻−𝑖 �̄�𝑖(𝜓(≻
′
𝑖 , ≻−𝑖))

(ii) min≻−𝑖 𝜌𝑖(𝜓(≻𝑖, ≻−𝑖)) ≤ min≻−𝑖 𝜌𝑖(𝜓(≻
′
𝑖 , ≻−𝑖))

If either of (i) or (ii) does not hold for some agent and type, then ≻′
𝑖 is an

bvious manipulation for agent 𝑖 of type ≻𝑖, and the mechanism 𝜓 is said
to be obviously manipulable.

To understand the definition of an obvious manipulation, first con-
sider part (i). On the LHS of the inequality, �̄�𝑖(𝜓(≻𝑖, ≻−𝑖)) is the rank of
’s worst-case outcome that might arise when the implemented random
llocation is 𝜓(≻𝑖, ≻−𝑖). We then take the maximum over ≻−𝑖. This
rocess returns the worst-case outcome for 𝑖 over all possible reports
f other agents, ≻−𝑖, and all possible realizations of Nature. The RHS
s the same, just replacing ≻𝑖 with a misreport ≻′

𝑖 . The inequality in
i) says that the rank of the worst-case outcome under the misreport

8 Non-obvious manipulability shares a similar motivation with the seminal
aper of Li (2017) on obvious dominance (and indeed, the model of cognitive
imitations used by Troyan and Morrill (2020) to characterize obvious manip-
lations is the same used by Li (2017) to characterize obvious dominance). In
is paper, Li writes: ‘‘Weak dominance treats chance moves and other players
symmetrically... By contrast, obvious dominance treats chance moves and
ther players symmetrically’’. In the original model of Troyan and Morrill
2020), Nature (or, what Li (2017) refers to as ‘‘chance’’) does not play a role,
ut here, I must incorporate it. The definition I use continues in the same spirit

f Li (2017), by treating Nature and other players symmetrically.
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should be weakly worse (i.e., weakly higher) than that under the truth.
Part (ii) of Definition 1 is analogous, except it compares the best-
case outcomes instead, and, since lower numbers correspond to more
preferred outcomes, we replace max with min.

There are several justifications for why a designer might be con-
cerned with obvious manipulations. As discussed in the introduction,
just because a mechanism can be manipulated does not mean that
t will be manipulated, and Definition 1 is a way to separate those
anipulations that are ‘‘obvious’’, and are thus likely to be identi-

ied by participants, from those that are not. Formally, Theorem 1
f Troyan and Morrill (2020) shows that obvious manipulations are
recisely those manipulations that can be recognized by an agent who
s cognitively-limited in the sense defined by Li (2017), and is unable
o contingently reason about outcomes state-by-state. Mathematically,
uch agents know the range of the function 𝜓 conditional on their
wn reports, but not the full function itself, state-by-state.9 Allowing
ome manipulations so long as they are non-obvious widens the space
f mechanisms available to the designer, which may allow for im-
rovements on other dimensions, such as the average rank. Further,
nlike other relaxations of strategyproofness such as Bayesian incentive
ompatibility or approximate notions such as strategyproofness-in-the-
arge (SPL, Azevedo and Budish, 2019), NOM requires no assumptions
n how preferences are drawn or agent beliefs. Rather, NOM is defined
sing best and worst case scenarios, which are likely to be particularly
alient.10

. Results

In this section, I provide my main results on the non-obvious
anipulability of RM mechanisms. An important distinction is whether

he RM mechanism under consideration is a full-support mechanism or
ot. We start by considering full-support mechanisms, and then move
o discuss other selection rules.

.1. Full-support RM mechanisms

Recall that we say a rank-minimizing mechanism has full support
f, for all ≻𝐼 , 𝜓(≻𝐼 ) is a full-support RM allocation, or, equivalently,
(≻𝐼 )(𝛼) > 0 for all 𝛼 ∈ ̄(≻𝐼 ). In words, for each preference profile ≻𝐼 ,

the mechanism selects every rank-minimizing allocation with strictly
positive probability.

Theorem 1. Let 𝜓 be a rank-minimizing mechanism with full support.
Then, 𝜓 is not obviously manipulable.

The proof of Theorem 1 can be found in the appendix. The full-
support assumption requires only that the mechanism place non-zero
probability on each rank-minimizing allocation, but otherwise the dis-
tribution can be arbitrary. One example is the mechanism that, for
each preference profile ≻𝐼 , selects an allocation uniformly at random
from ̄(≻𝐼 ), the set of all rank-minimizing allocations. We call this
mechanism the uniform rank-minimizing (URM) mechanism.

9 This is particularly relevant in the context of school choice. For in-
tance, Troyan and Morrill (2020) write: ‘‘...this could be a neighborhood
arent group that does not fully understand (or has not been told) the
ssignment algorithm but has kept track of what preferences have been
ubmitted and what the resulting assignments were’’. Such parent groups are
ndeed quite common; see Pathak and Sönmez (2008).
10 Following Troyan and Morrill (2020), several other papers have applied
on-obvious manipulability to various settings, including Aziz and Lam (2021),
rtega and Segal-Halevi (2022), Archbold et al. (2022), Troyan et al. (2020),
nd Cerrone et al. (2024). Also similar in spirit, though technically different,
s Li and Dworczak (2021) who show that a designer can sometimes be better
ff using a non-SP mechanism even when agents are unsophisticated, no matter
ow they resolve their ‘‘strategic confusion’’.
4

URM is a natural choice from the class of RM mechanisms, and
is one that has received attention in the literature. Nikzad (2022)
shows that URM is Bayesian incentive compatible in markets in which
agent preferences are drawn iid and uniformly at random. Ortega and
Klein (2023) also use the URM implementation of RM in both their
theoretical results comparing RM to TTC and DA, as well as in their
simulations.11

By Theorem 1, URM is not obviously manipulable. Besides satisfying
appealing efficiency (rank-minimizing) and strategic (NOM) properties,
a final advantage of URM is that because it randomizes uniformly, it
treats all agents fairly. This can be formalized as follows. Let 𝜓𝑖(≻𝐼 )
be agent 𝑖’s lottery over objects she is assigned that is induced by the
random allocation 𝜓(≻𝐼 ). A mechanism 𝜓 satisfies equal treatment
of equals (ETE) if for all ≻𝐼∈ 𝐼 and all 𝑖, 𝑗 ∈ 𝐼 , ≻𝑖=≻𝑗 implies
𝜓𝑖(≻𝐼 ) = 𝜓𝑗 (≻𝐼 ).

Proposition 1. The uniform rank-minimizing mechanism satisfies equal
treatment of equals.

The proof of this proposition is simple to see. Consider two agents
𝑖 and 𝑗 that have the same preferences. Because 𝑖 and 𝑗 have the
same preferences, starting from any allocation and swapping their
assignments results in no change in the average rank. In particular,
for any rank-minimizing allocation 𝛼 ∈ supp(𝜓(≻𝐼 )), there is another
allocation 𝛼′ ∈ supp(𝜓(≻𝐼 )) such that 𝛼′𝑖 = 𝛼𝑗 , 𝛼′𝑗 = 𝛼𝑖, and 𝛼′𝑘 = 𝛼𝑘
or all 𝑘 ≠ 𝑖, 𝑗. Since the URM mechanism selects each element in
upp(𝜓(≻𝐼 )) with equal probability, by symmetry, agents 𝑖 and 𝑗 will
ave the same lottery over final objects.

.2. RM mechanisms without full support

While full support RM mechanisms — in particular, the URM
echanism — seem natural, and are always NOM, it is also possible

o consider other RM mechanisms that violate this assumption, and so,
t is also necessary to investigate whether the NOM property extends
eyond full-support mechanisms. As I will show in this section, the
nswer is ‘‘it depends’’.

I start by showing that full support is not necessary for NOM
mplementation by showing that there exist deterministic RM mech-
nisms that are NOM.12 In particular, Featherstone (2020) suggests the
ollowing tie-breaking procedure13: find the set of deterministic RM
llocations ̄(≻𝐼 ), order the agents in some (exogenous) way, and run a
erial dictatorship starting with ̄(≻𝐼 ). In the serial dictatorship phase,
hen each agent’s turn comes, she finds the remaining allocation(s)

hat give her most preferred object, and eliminates all others. We call
his mechanism the rank-minimizing serial dictatorship (RM-SD) mecha-
ism. It is obvious that the RM-SD mechanism always ends with a single
eterministic allocation at the end of the serial dictatorship phase, and
o this is a deterministic mechanism (in particular, it does not have full
upport).

11 An additional issue for implementing URM (or, any full-support RM
mechanism) is computational: formally, the mechanism requires finding all
allocations that minimize the average rank. While it is known that the problem
of finding one RM allocation has complexity 𝑂(𝑛3) (Krokhmal and Pardalos,
2009; Parviainen, 2004), I am not aware of any results on the computational
complexity of finding all RM allocations, and am unable to speculate on the
impact of this issue in practice. For instance, Ortega and Klein (2023) run
simulations and counterfactual analysis using Hungarian school choice data,
and use an algorithm that searches for one rank-minimizing allocation. While
this is not exactly equivalent to URM, by perturbing the algorithm slightly,
they are able to find many different rank-minimizing allocations, and they
find that there is little variance across them, suggesting that this may not be
a major issue in practice.

12 By deterministic I mean that for each ≻𝐼 , 𝜓(≻𝐼 )(𝛼) = 1 for one allocation
𝛼 and 𝜓(≻𝐼 )(𝛼′) = 0 for all 𝛼′ ≠ 𝛼.

13 Featherstone (2020) applies this procedure to his broader class
of welfare-maximization mechanisms, which contains the class of RM
mechanisms.
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Rank-minimizing serial dictatorship (RM-SD)
For a set of allocations 𝐴′ ⊆  and an agent preference ≻𝑖, let

𝑇 𝑜𝑝≻𝑖 (𝐴
′) = {𝛼 ∈ 𝐴′ ∶ 𝛼𝑖 ≿𝑖 �̂�𝑖 for all �̂�𝑖 ∈ 𝐴′}.

In words, 𝑇 𝑜𝑝≻𝑖 (𝐴
′) consists of all of the allocations in the set 𝐴′ at

which agent 𝑖 gets her top choice. The RM-SD mechanism is defined as
follows.

• Fix a bijection 𝑓 ∶ {1,… , 𝑁} → 𝐼 . This bijection produces an
ordering of the agents, where agent 𝑓 (1) is first, agent 𝑓 (2) is
second, etc.

• Given a reported preference profile ≻𝐼 , let ̄(≻𝐼 ) be the set of
rank-minimizing allocations at ≻𝐼 . Initialize 𝐴0 = ̄(≻𝐼 ).

• Consider agent 𝑓 (1), and calculate the set 𝐴1 = 𝑇 𝑜𝑝≻𝑓 (1) (𝐴0).
• Consider agent 𝑓 (2), and calculate the set 𝐴2 = 𝑇 𝑜𝑝≻𝑓 (2) (𝐴1)

• etc.

The mechanism ends with a final set 𝐴𝑁 = 𝑇 𝑜𝑝≻𝑓 (𝑁)
(𝐴𝑁−1), where

𝐴𝑁 = {𝛼}. That is, 𝐴𝑁 contains a unique allocation 𝛼. This allocation
𝛼 is the final output of the RM-SD mechanism.

For the next result, I focus on unit capacity markets in which
|𝐼| = |𝑂| = 𝑁 , and 𝑞𝑜 = 1 for all 𝑜 ∈ 𝑂. When each object has unit
capacity, the RM-SD mechanism is not obviously manipulable.

Proposition 2. In unit capacity markets, the RM-SD mechanism is not
obviously manipulable.

The proof of this proposition is in the appendix. Proposition 2 shows
that the full-support assumption of Theorem 1 is not necessary for RM
to be NOM. However, the unit capacity assumption is needed to get this
result, and if we do not require it, RM-SD is no longer NOM.

Proposition 3. Assume that there are at least 3 objects and at least
4 agents, and at least one object has capacity 𝑞𝑜 > 1. Then, RM-SD is
obviously manipulable.

The proof considers a market with 4 agents and 3 objects with
capacities 𝑞1 = 𝑞3 = 1 and 𝑞2 = 2, and focuses on an agent 𝑖 with
preferences 𝑜1 ≻𝑖 𝑜2 ≻𝑖 𝑜3.14 When agent 𝑖 is second in the serial
dictatorship stage, his favorite object 𝑜1 might be taken by the first
agent, and then the rank-minimizing constraints relegate him to 𝑜3, his
worst object. If he instead reports 𝑜2 ≻′

1 𝑜1 ≻
′
1 𝑜3, then, because 𝑜2 has

capacity 2 and agent 𝑖 is second in the serial dictatorship, he is able to
guarantee himself 𝑜2, which is an obvious manipulation. The full details
are in the appendix.

I close this section by noting that even in unit capacity markets,
there exist RM mechanisms that are obviously manipulable.

Proposition 4. Even in unit capacity markets, there exist rank-minimizing
mechanisms (without full support) that are obviously manipulable.

The proof of this proposition (also in the appendix) is by again
example. I include this result because the mechanism works differently
than the one used to prove Proposition 3, and I think is instructive. In
particular, I consider a market of three agents 𝐼 = {𝑖, 𝑗, 𝑘} and three
objects 𝑂 = {𝑜1, 𝑜2, 𝑜3}.15 When all agents report the same preferences,
say 𝑜1 ≻ 𝑜2 ≻ 𝑜3, all allocations are rank-minimizing. Since we do not
require full-support, the mechanism always selects a single allocation
such that agent 𝑖 receives her worst choice: 𝛼𝑖 = 𝑜3. However, when
agent 𝑖 reports a different preference, say 𝑜2 ≻′

𝑖 𝑜1 ≻
′
𝑖 𝑜3, the mechanism

always selects an allocation in which agent 𝑖 does not receive her worst

14 The same proof can be easily embedded in larger markets. The key feature
s that at least one object must have greater than unit capacity. Also, the proof
f Proposition 2 above points out where the argument no longer holds when
oving from unit capacity to more general markets.
15 Again, this can be easily embedded in larger markets.
5

choice: 𝛼′𝑖 ≠ 𝑜3. (The main work of the proof is to show that no matter
he preferences of the other agents, it is always possible to find a rank-
inimizing allocation where 𝛼′𝑖 ≠ 𝑜3.) Thus, if agent 𝑖 reports her

rue type 𝑜1 ≻𝑖 𝑜2 ≻𝑖 𝑜3, her worst case is 𝑜3, while if she misreports
2 ≻′

𝑖 𝑜1 ≻
′
𝑖 𝑜3, her worst case is strictly better than 𝑜3. Therefore, ≻′

𝑖 is
n obvious manipulation. for type ≻𝑖.

Notice that in this mechanism, agent 𝑖 is treated differently than
he other agents: effectively, the mechanism ‘‘protects’’ 𝑖 from ever
eceiving her worst choice if she reports ≻′

𝑖 . Even though there may
e rank-minimizing allocations at which 𝑖 receives 𝑜3, the mecha-
ism never selects these, whereas a full-support mechanism sometimes
ould. Indeed, it seems intuitive that if a mechanism is protecting an
gent from her worst choice at some preference profiles, but not at
thers, it will be ‘‘obvious’’ that this mechanism can be manipulated.
ecause agent 𝑖 is treated differently than the others, this mechanism
lso violates the fairness condition of equal treatment of equals in-
roduced in the previous subsection, and that is satisfied by the URM
echanism.16

The above results provide just a sampling of possible selection rules
or RM, and there are of course many others. For instance, while RM-SD
s obviously manipulable when objects can have capacity greater than
, there could be other selection rules for which RM is NOM. While such
broad characterization is beyond the scope of this paper, the results
ere suggest that when going beyond full support RM mechanisms, the
etails of the selection rule will matter for the NOM properties of RM
echanisms.

. Conclusion

This paper investigates conditions under which RM mechanisms,
hile not strategyproof, are at least not obviously manipulable. I show

hat as long as the mechanism has full support, RM will be NOM. In
articular, the uniform RM mechanism in which the designer selects
he final allocation uniformly at random from among all of those
llocations that minimize the average rank is an NOM mechanism.
hile this is quite a natural selection rule, and one that has been used

y other papers in the literature on RM, there are instances in which
designer may have some interest in favoring some RM allocations

ver others, and thus may find it desirable to use a selection rule
hat does not have full-support. My results suggest that care should
e taken when doing so. While such mechanisms may achieve the
esigner’s secondary objectives while retaining the rank-minimizing
roperty, they might also compromise the (non-)obvious manipulability
f the resulting mechanism and ultimately undermine these objectives.

In sum, the rank-minimizing mechanism is appealing for assignment
roblems, because it directly optimizes a natural objective that is desir-
ble to policy-makers. Thus, it is somewhat striking that there has been
hus far relatively little written about this mechanism in the economics
and in particular, school choice) literature, while there have been
erhaps hundreds of papers written about mechanisms such as DA
nd TTC. One possible explanation for this gap is that the literature
s overly-focused on strategyproofness as an incentive property, which
s satisfied by both DA and TTC. While strategyproofness is a very
ppealing desideratum, it limits the flexibility for a designer to optimize
n other important dimensions. Considering weaker properties such as
OM allows access to a broader class of mechanisms, including (some)

ank-minimizing ones. Whether such mechanisms will be manipulated
n practice is ultimately an empirical question, but given my results
nd their other desirable properties, I argue that RM mechanisms are a
lass of mechanisms that is worthy of further investigation for practical
arket design applications.

16 The RM-SD mechanism also violates equal treatment of equals, as the
agent who goes first in the serial dictatorship phase has an advantage relative
to any later agents who submit the same preferences.
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Appendix. Proofs

Proof of Theorem 1

Let 𝜓𝑅𝑀 be a rank-minimizing mechanism with full support. I start
with the following lemma.

Lemma 1. Consider a preference profile ≻′
𝐼 such that for ≻

′
𝑖=≻

′
𝑗 for all

𝑖, 𝑗 ∈ 𝐼 , and wlog, let this preference ranking be ≻′
𝑗∶ 𝑜1, 𝑜2,… , 𝑜𝑀 . Define

𝑚∗ = min{𝑚 ∶
∑𝑚
𝑚′=1 𝑞𝑚′ ≥ 𝑁} and 𝑂′ = {𝑜1,… , 𝑜𝑚∗}, and let 𝐴∗ ⊆  be

the subset of allocations that satisfy:

(I) All 𝑜𝑚 ∈ 𝑂′ ⧵ {𝑜𝑚∗} are assigned to exactly 𝑞𝑚 agents.
(II) Object 𝑜𝑚∗ is assigned to exactly 𝑁 −

∑𝑚∗−1
𝑚′=1 𝑞𝑚′ agents.

Then, ̄(≻′
𝐼 ) = 𝐴∗. Further, for any �̃� ∈ 𝑂′ = {𝑜1,… , 𝑜𝑚∗}, there is at least

one allocation 𝛼 ∈ ̄(≻′
𝐼 ) such that 𝛼𝑖 = �̃�.

In words, object 𝑜𝑚∗ is the critical object, in the sense that the
set 𝑂′ = {𝑜𝑚1

,… , 𝑜𝑚∗} has enough total capacity to accommodate all
agents, while the set 𝑂′ ⧵ {𝑜𝑚∗} does not. The set 𝐴∗ is then the set of
all allocations that consist of all possible ways of assigning the 𝑁 agents
to the objects in 𝑂′ such that 𝑜𝑚1

,… , 𝑜𝑚∗−1 are filled to capacity, and
all remaining agents are assigned to 𝑜𝑚∗ . The lemma says that when all
agents have the same preferences, any rank-minimizing allocation must
satisfy (I) and (II).

Proof of Lemma 1. Under the preference profile given, since all agents
rank everything the same, the average rank of any allocation 𝛼 is:

̄(𝛼) = 1
𝑁

( 𝑀
∑

𝑚=1
𝑚|{𝑖 ∈ 𝐼 ∶ 𝛼𝑖 = 𝑜𝑚}|

)

.

his is clearly minimized by any allocation that assigns 𝑞1 students to
1, 𝑞2 students to 𝑜2, etc., until all students are assigned. This is precisely
he set of allocations 𝐴∗, and so by construction, any allocation 𝛼 ∈ 𝐴∗

chieves the minimum average rank. For any allocation 𝛼′ ∉ 𝐴∗, either
I) or (II) must fail. If (I) fails, let 𝑜�̂� ∈ {𝑜1,… , 𝑜𝑚∗−1} be an object that
s not filled to capacity. Then, there must be some agent 𝑗 assigned to
ome object 𝑜𝑚∗ ,… , 𝑜𝑀 . Reassigning agent 𝑗 to object 𝑜�̂� and leaving all
ther assignments the same lowers the average rank, and so 𝛼′ ∉ ̄(≻𝐼 ).
herefore, (I) must hold. If (II) fails, then once again, there is some
gent 𝑗 assigned to some object 𝑜𝑚∗+1,… , 𝑜𝑀 , and we can move this
gent to object 𝑜𝑚∗ and lower the average rank. Therefore, ̄(≻′

𝐼 ) =
∗. Lastly, because all agents have the same preferences, it does not
atter precisely which agents are assigned to which objects, and so by

ymmetry, there exists at least one 𝛼 ∈ ̄(≻′
𝐼 ) such that 𝛼𝑖 = �̃� for all

�̃� ∈ 𝑂′. ■

Now, consider an agent 𝑖 with type ≻𝑖. I show that for any ≻′
𝑖≠≻𝑖,

ach part of Definition 1 holds for any rank-minimizing mechanism
ith full support.
6

c

Part (i): max≻−𝑖 �̄�𝑖(𝜓
𝑅𝑀 (≻𝑖, ≻−𝑖)) ≤ max≻−𝑖 �̄�𝑖(𝜓

𝑅𝑀 (≻′
𝑖 , ≻−𝑖)).

Without loss of generality, index agent 𝑖’s true type as
𝑖∶ 𝑜1, 𝑜2,… , 𝑜𝑀 . I first show that when 𝑖 reports her true preferences,
ax≻′−𝑖 �̄�𝑖(𝜓

𝑅𝑀 (≻𝑖, ≻′
−𝑖)) = 𝑚∗, where 𝑚∗ is as defined in Lemma 1.

hen ≻𝑗=≻𝑖 for all 𝑗, there is at least one allocation 𝛼 ∈ ̄(≻𝐼 )
uch that 𝛼𝑖 = 𝑜𝑚∗ , by Lemma 1. Since 𝜓𝑅𝑀 has full support, this
mplies max≻′−𝑖 �̄�𝑖(𝜓

𝑅𝑀 (≻𝑖, ≻′
−𝑖)) ≥ 𝑚∗. To show equality, assume that

ax≻−𝑖 �̄�𝑖(𝜓
𝑅𝑀 (≻𝑖, ≻−𝑖)) > 𝑚∗. Then, there must be some ≻′

−𝑖 and some
′ ∈ ̄(≻𝑖, ≻′

−𝑖) such that 𝛼′𝑖 = 𝑜𝑚′ for some 𝑚′ > 𝑚∗. This implies that
here is some 𝑚′′ ≤ 𝑚∗ such that object 𝑜𝑚′′ is not filled to capacity.
hus, consider an alternative allocation 𝛼′′ where agent 𝑖 is reassigned
o 𝑜𝑚′′ and all other agents have the same assignment as in 𝛼′. Then, we
ave �̄�(𝛼′′) < �̄�(𝛼′), i.e., this lowers the average rank, which contradicts
hat 𝛼′ ∈ ̄(≻𝑖, ≻′

−𝑖). Therefore, max≻′−𝑖 �̄�𝑖(𝜓
𝑅𝑀 (≻𝑖, ≻′

−𝑖)) = 𝑚∗.
Thus, I have shown that when 𝑖 reports her true preferences, her

orst-case outcome is max≻′−𝑖 �̄�−𝑖(𝜓
𝑅𝑀 (≻𝑖, ≻′

−𝑖)) = 𝑚∗. What remains to
how is that for any misreport ≻′

𝑖≠≻𝑖, we have max≻′−𝑖 �̄�𝑖(𝜓
𝑅𝑀 (≻′

𝑖 , ≻
′
−𝑖

) ≥ 𝑚∗, where of course the maximum is evaluated with respect to 𝑖’s
rue preferences. Consider a misreport ≻′

𝑖≠≻𝑖. For notational purposes,
ndex this preference profile as
′
𝑖∶ 𝑜𝑟1 , 𝑜𝑟2 ,… , 𝑜𝑟𝑀 .

et 𝑚∗∗ = min{𝑚 ∶
∑𝑚
𝑚′=1 𝑞𝑟𝑚′ ≥ 𝑁}. Similar to Lemma 1, this is the

ndex of the critical object in the sense that the set 𝑂′′ = {𝑜𝑟1 ,… , 𝑜𝑟𝑚∗∗ }
as enough total capacity for all agents, but the set {𝑜𝑟1 ,… , 𝑜𝑟𝑚∗∗−1}
oes not. Consider a preference profile ≻′

𝐼 such that ≻′
𝑗=≻

′
𝑖 for all 𝑗 ∈ 𝐼 .

y Lemma 1, we have ̄(≻′
𝐼 ) = 𝐴∗∗, where 𝐴∗∗ is defined analogously

o 𝐴∗ in Lemma 1, replacing 𝑂′ with the set 𝑂′′.
Case 1: 𝑂′′ = 𝑂′.
Since 𝑜𝑚∗ ∈ 𝑂′ = 𝑂′′, by Lemma 1, there is at least one allo-

ation 𝛼 ∈ ̄(≻′
𝐼 ) such that 𝛼𝑖 = 𝑜𝑚∗ . Since 𝜓𝑅𝑀 has full support,

ax≻′−𝑖 �̄�𝑖(𝜓
𝑅𝑀 (≻′

𝑖 , ≻
′
−𝑖) ≥ 𝑚∗, as desired.

Case 2: 𝑂′′ ≠ 𝑂′.
By definition, we cannot have 𝑂′′ ⊊ 𝑂′,17 and so, if 𝑂′′ ≠ 𝑂′, there is

ome 𝑜𝑚 ∈ 𝑂′′ such that 𝑚 > 𝑚∗, and thus 𝑜𝑚∗ ≻𝑖 𝑜𝑚 according to 𝑖’s true
references ≻𝑖. By Lemma 1, there is at least one allocation 𝛼 ∈ ̄(≻′

𝐼 )
uch that 𝛼𝑖 = 𝑜𝑚. Because 𝑜𝑚∗ ≻𝑖 𝑜𝑚 and 𝜓𝑅𝑀 has full support, this
mplies that max≻′−𝑖 �̄�𝑖(𝜓

𝑅𝑀 (≻′
𝑖 , ≻

′
−𝑖) > 𝑚

∗, as desired.
This completes the argument for part (i).

art (ii): min≻−𝑖 𝜌𝑖(𝜓(≻𝑖, ≻−𝑖)) ≤ min≻−𝑖 𝜌𝑖(𝜓(≻
′
𝑖 , ≻−𝑖)).

Without loss of generality, consider agent 𝑖 whose preferences are
𝑖∶ 𝑜1,… , 𝑜𝑀 . As in part (i), let 𝑚∗ = min{𝑚 ∶

∑𝑚
𝑚′=1 𝑞𝑚 ≥ 𝑁}. Consider

reference profile ≻−𝑖 for the other agents constructed as follows:

• Exactly 𝑞1 − 1 agents have preferences such that ≻𝑗∶ 𝑜1,….
• For all 𝑚′ = 2,… , 𝑚∗−1, exactly 𝑞𝑚′ agents have preferences such

that ≻𝑗∶ 𝑜𝑚′ ,….
• Exactly 𝑁 −

∑𝑚∗−1
𝑚′=1 𝑞𝑚′ agents have preferences such that ≻𝑗∶

𝑜𝑚∗ ,….

n words, the constructed profile ≻𝐼 is such that each object 𝑜𝑚 has
exactly 𝑞𝑚 agents who have ranked it first. This is possible by the
definition of 𝑚∗ and the assumption that ∑𝑚 𝑞𝑚 ≥ 𝑁 . Now, notice that
at this profile, there is a unique rank-minimizing allocation, 𝜓𝑅𝑀 (≻𝐼
) = {𝛼∗}, where 𝛼∗ is the allocation such that each agent is assigned to
her first-choice object. Thus, 𝜌𝑖(𝜓(≻𝑖, ≻−𝑖)) = 1, and so min≻−𝑖 𝜌𝑖(𝜓(≻𝑖
, ≻−𝑖)) = 1. Since it is obvious that 𝜌𝑖(𝜓(≻

′
𝑖 , ≻−𝑖)) ≥ 1 for any (≻′

𝑖 , ≻−𝑖),
we have min≻−𝑖 𝜌𝑖(𝜓(≻𝑖, ≻−𝑖)) ≤ min≻−𝑖 𝜌𝑖(𝜓(≻

′
𝑖 , ≻−𝑖)), and therefore part

ii) of Definition 1 holds. ■

17 This follows because 𝑂′ = {𝑜1,… , 𝑜𝑚∗} where 𝑚∗ is the smallest index such
that 𝑂′ contains enough capacity for all agents. If 𝑂′′ ⊊ 𝑂′, then 𝑂′′ cannot
ontain enough capacity for all agents, which contradicts the definition of 𝑂′′.
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Proof of Proposition 2

Consider a market such that |𝐼| = |𝑂| = 𝑁 , and 𝑞𝑜 = 1 for all
∈ 𝑂. Let 𝜓 denote the RM-SD mechanism with fixed agent ordering
(1),… , 𝑓 (𝑁) in the SD stage. I start with the following claim.

laim 1. Consider an agent, wlog labeled agent 1, with preferences 𝑜1 ≻1

2 ≻1 ⋯ ≻1 𝑜𝑁 .18 For all objects 𝑜 ≠ 𝑜𝑁 , there exists a preference profile
or the remaining agents ≻−1 such that there is a unique rank-minimizing
llocation 𝛼 at ≻𝐼= (≻1, ≻−1), and at this allocation 𝛼1 = 𝑜.

In other words, this claim says that, for any preferences the agent
ubmits, under any rank-minimizing mechanism, the agent could re-
eive any object, with the possible exception of the object she ranks
ast.

roof of Claim 1. . Wlog, let 𝑜 = 𝑜𝑚, where 𝑚 ≤ 𝑁 − 1. Consider a
rofile of preferences defined as follows:

≻1 ≻2 ≻3 ⋯ ≻𝑚 ≻𝑚+1 ⋯ ≻𝑁−1 ≻𝑁
⋮ 𝑜1 𝑜2 𝑜𝑚−1 𝑜𝑚+1 𝑜𝑁−1 𝑜𝑁
⋮
𝑜𝑚 ⋮ ⋮ ⋯ ⋯ ⋮ ⋮

⋮
𝑜𝑁 𝑜𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚 𝑜𝑚

In other words, all agents besides agent 1 rank 𝑜𝑚 last, and each of
hese 𝑁 −1 agents has a distinct favorite object in the set 𝑂 ⧵ {𝑜𝑚} (the
ots indicate that the remaining parts of the preference profile can be
rbitrary). Let the allocation in boxes be denoted by 𝛼.

For any allocation 𝛼′, let 𝑅(𝛼′) =
∑𝑁
𝑖=1 𝑟𝑖(𝛼

′
𝑖 ) be the total sum of

anks.19 We claim that 𝛼 in the boxes is the unique rank-minimizing
llocation for this preference profile. To see this, note that

(𝛼) =

Agent 1
⏞⏞⏞
𝑚 +

𝑁−1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 + 1⋯ + 1 = 𝑚 + (𝑁 − 1)

t is immediate to see that any alternative allocation 𝛼′ in which 𝛼′1 = 𝑜𝑚
ust have 𝑅(𝛼′) > 𝑅(𝛼), because agent 1’s rank remains unchanged,

nd the total sum of ranks of agents 2,… , 𝑁 is clearly minimized by
iving them all their first choice. Next, consider an allocation 𝛼′ such
hat 𝛼′1 = 𝑜𝑚′ for some 𝑚′ > 𝑚. At this allocation, 𝑟1(𝛼′1) > 𝑟1(𝛼1), and
𝑗 (𝛼′𝑗 ) ≥ 1 = 𝑟𝑗 (𝛼𝑗 ) for all 𝑗 ≠ 1, and thus 𝑅(𝛼′) > 𝑅(𝛼).

Finally, consider an allocation such that 𝛼′1 = 𝑜𝑚′ for some 𝑚′ < 𝑚.
e can write:

(𝛼′) − 𝑅(𝛼) =
𝑁
∑

𝑖=1
(𝑟𝑖(𝛼′𝑖 ) − 𝑟𝑖(𝛼𝑖)).

otice that 𝑟1(𝛼′1) − 𝑟1(𝛼1) = 𝑚′ − 𝑚. Since some agent 𝑗 must be
ssigned to 𝑜𝑚, and all of the other agents rank it last, we have for
he agent 𝑗 that receives 𝑜𝑚, 𝑟𝑗 (𝛼′𝑗 )− 𝑟𝑗 (𝛼𝑗 ) = 𝑁 −1. For all other agents,
𝑘(𝛼′𝑘) − 𝑟𝑘(𝛼𝑘) ≥ 0 (since 𝑟𝑘(𝛼𝑘) = 1 and 𝑟𝑘(𝛼′𝑘) ≥ 1). Thus, we have

(𝛼′) − 𝑅(𝛼) = 𝑚′ − 𝑚 + (𝑁 − 1) +
∑

𝑘≠𝑖,𝑗
(𝑟𝑘(𝛼′𝑘) − 𝑟𝑘(𝛼𝑘))

The last summation is bounded below by 0, so 𝑅(𝛼′) −𝑅(𝛼) ≥ 𝑚′ −𝑚 +
𝑁 −1) ≥ 2−𝑁 + (𝑁 −1) = 1,20 i.e., 𝑅(𝛼′) > 𝑅(𝛼). Thus, 𝛼 is the unique
ank-minimizing allocation, and at this allocation, 𝛼1 = 𝑜𝑚. ■

18 Agent 1 need not be the first agent in the SD ordering, i.e., 𝑓 (1) ≠ 1.
Further, the indexing of the true preference ordering as 𝑜1 ≻1 𝑜2 ≻1 ⋯ is
without loss of generality. The same arguments will apply to any agent with
any true preference ordering.

19 Obviously, minimizing average rank is equivalent to minimizing the total
sum of ranks. I work with the latter here to avoid having to carry around the
1∕𝑁 notation everywhere.

20 The second inequality follows because 𝑚 ≤ 𝑁−1 and 𝑚′ ≥ 1, which implies
′

7

that 𝑚 − 𝑚 ≥ 2 −𝑁 . e
Note that Claim 1 does not apply to 𝑜𝑁 (or, more generally, the
object that agent 1 ranks last). In particular, the preferences used in
the proof no longer work, because when all agents rank the same object
last, there might be multiple rank-minimizing allocations.

Now, consider an agent 1 with true preferences 𝑜1 ≻1 𝑜2 ≻1 ⋯ ≻1
𝑜𝑁 . By Claim 1, we have that

max
≻−1

�̄�1(𝜓(≻1, ≻−1)) ≥ 𝑁 − 1. (1)

Consider a false report ≻′
1, and index this report as 𝑝1 ≻′

1 𝑝2 ≻
′
1 ⋯ ≻′

1 𝑝𝑁
note that 𝑝𝑚—the 𝑚th ranked object for ≻′

1—may be different from
𝑚, the 𝑚th ranked object for the true preferences ≻1). By Claim 1

applied to ≻′
1, for all 𝑜 ≠ 𝑝𝑁 there exist preference profiles ≻′

−1 such
hat there is a unique rank-minimizing allocation 𝛼 at (≻′

1, ≻
′
−1), and at

his allocation, 𝛼1 = 𝑜. In particular, this implies that either 𝑜𝑁−1 or
𝑁 is a possible outcome for agent 1, and thus max≻−1 �̄�1(𝜓(≻

′
1, ≻−1)) ≥

− 1. If Eq. (1) holds with equality, then the proof is complete, as
ax≻−1 �̄�1(𝜓(≻

′
1, ≻−1)) ≥ 𝑁 − 1 = max≻−1 �̄�1(𝜓(≻1, ≻−1)).

Thus, we need to last consider the case that Eq. (1) is a strict
nequality, which means that max≻−1 �̄�1(𝜓(≻1, ≻−1)) = 𝑁 . In this case,
hen agent 1 submits her true preferences 𝑜1 ≻1 ⋯ ≻1 𝑜𝑁 , there is

ome preference profile ≻−1 where she might receive object 𝑜𝑁 . We
ust show that, for any ≻′

1 that agent 1 might submit, there exists some
′
−1 where she receives object 𝑜𝑁 . If ≻′

1 ranks 𝑜𝑁 anything other than
ast, then, as in the previous paragraph, we can apply Claim 1 to the
reference ≻′

1 and conclude there exists some ≻′
−1 such that agent 1

eceives 𝑜𝑁 for sure, and we are done.
Thus, consider the case that ≻′

1 ranks 𝑜𝑁 last. Let ≻−1 be the
reference profile of the remaining agents such that, when 1 reports
he truth, agent 1 receives 𝑜𝑁 . In the RM-SD mechanism at (≻′

1, ≻−1),
hen it is agent 1’s turn to choose in the serial dictatorship step, it must
e that all remaining allocations she can select from assign her to 𝑜𝑁
as otherwise, she would eliminate these allocations and choose a better
bject for herself). In particular, this implies that 𝑓 (1) > 1, i.e., agent 1
annot select first.21

Index agent 1’s false report ≻′
1 as:

′
1∶ 𝑝1,… , 𝑝𝑁 .

Notice that 𝑝𝑛 need not be equal to 𝑜𝑛; we use 𝑝’s to convey that
his is a report that ranks the objects differently than the true report
which was indexed ≻1∶ 𝑜1,… , 𝑜𝑁 ) while still being able to make easy
eference to the 𝑛th ranked object. However, we are in the case that ≻′

1
anks 𝑜𝑁 — agent 1’s worst object according to her true preferences —
ast, so 𝑝𝑁 = 𝑜𝑁 .

Let 𝑘 = 𝑓 (1) the order in which agent 1 chooses in the SD phase.
y footnote 1, 𝑘 > 1 and, without loss of generality, assume that the
exogenous) SD ordering of the agents is 2, 3,… , 𝑘, 1, 𝑘 + 1,… , 𝑁 (in
ther words, the ordering not including agent 1 is just 2, 3, 4,…, and
gent 1 is slotted in the 𝑘th position). Consider a preference profile
′
𝐼= (≻′

1, ≻
′
−1) that takes the form shown in Table 1.

laim 2. For any rank-minimizing allocation 𝛼 ∈ ̄(≻′
𝐼 ), object 𝑝𝑁 is

ssigned to either agent 1 or agent 2.

roof. First, notice that every agent ranks 𝑝𝑁 last, and it must be given
o someone. Thus, the lowest possible total sum of ranks, 𝑁 + (𝑁 −1)×
= 2𝑁−1, and indeed, this is achievable by, for instance, the allocation

21 Indeed, if 𝑓 (1) = 1, then it must be that agent 1 receives 𝑜𝑁 at all
llocations in ̄(≻′

𝐼 ), and thus some other agent 𝑗 receives 𝑜1 at some allocation
𝛼 ∈ ̄(≻′

𝐼 ). Let 𝛼′ denote the assignment at which agent 1 and agent 𝑗 swap,
nd all other agents’ assignments remain the same. Then, 𝛼′ cannot have a
orse average rank than 𝛼, and so 𝛼′ ∈ ̄(≻′

𝐼 ) as well, and so agent 1 would

liminate 𝛼 if she chose first.
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Table 1
Preference profile used for proving part of
Proposition 2. Recall that 𝑝𝑁 = 𝑜𝑁 . The boxed
allocation represents the outcome of the RM-SD
mechanism at this preference profile.

≻′
1 ≻′

2 ≻′
3 ⋯ ≻′

𝑁

𝑝1 𝑝1 𝑝2 𝑝𝑁−1

⋮ ⋮ ⋮ ⋮
𝑝𝑁 𝑝𝑁 𝑝𝑁 𝑝𝑁

n boxes in the table. What we show is that at any allocation 𝛼′ such
hat 𝛼𝑗 = 𝑝𝑁 for some 𝑗 ≠ 1, 2, 𝑅(𝛼′) > 2𝑁 − 1. Write

(𝛼′) = (𝑟′1(𝛼
′
1) + 𝑟

′
2(𝛼

′
2)) + (𝑟′𝑗 (𝛼

′
𝑗 )) +

(

∑

𝑖≠1,2,𝑗
𝑟′𝑖(𝛼

′
𝑖 )

)

≥ (3) + (𝑁) + (𝑁 − 3)

= 2𝑁

> 2𝑁 − 1.

he first inequality follows because (i) only one of agent 1 or 2 can be
etting their first choice,22 and so 𝑟′1(𝛼

′
1)+𝑟

′
2(𝛼

′
2) ≥ 3; (ii) by assumption,

′
𝑗 (𝛼

′
𝑗 ) = 𝑁 and (iii) ∑

𝑖≠1,2,𝑗 𝑟
′
𝑖(𝛼

′
𝑖 ) ≥ 𝑁 − 3. ■

Now, agent 2 chooses ahead of agent 1 in the serial dictatorship
hase of the mechanism, and so will eliminate all allocations in ̄(≻′

𝐼 )
hat give her 𝑝𝑁 . Thus, when it is agent 1’s turn to choose, all remaining
llocations are such that 𝛼1 = 𝑝𝑁 . Recalling that 𝑝𝑁 = 𝑜𝑁 , we have
hown that for any false report ≻′

1∶ 𝑝1,… , 𝑝𝑁 , there is a preference
rofile of the other agents ≻′

−1 such that at (≻′
1, ≻

′
−1) agent 1 gets 𝑜𝑁 .

We have therefore shown that, for all ≻′
1, max≻−1 �̄�1(𝜓(≻

′
1, ≻−1)) ≥

ax≻−1 �̄�1(𝜓(≻1, ≻−1)), which is part (i) of the definition of NOM.
art (ii) follows trivially: when all agents have a unique first choice,
he unique rank-minimizing allocation assigns them each their first
hoice. So, for any true preferences ≻1∶ 𝑜, 𝑜′, 𝑜′′,…, min≻−1 𝜌1(𝜓(≻1, ≻−1
) = 1, and it is immediate that min≻−1 𝜌1(𝜓(≻1, ≻−1)) ≤ min 𝜌

1
(𝜓(≻′

1,
−1)). ■

roof of Proposition 3

Let 𝐼 = {𝑖, 𝑗, 𝑘,𝓁}, 𝑂 = {𝑜1, 𝑜2, 𝑜3} and 𝑞1 = 𝑞3 = 1, while 𝑞2 = 2.
onsider a serial dictatorship ordering that is 𝑗, 𝑖, 𝑘,𝓁. Let agent 𝑖’s true
references be ≻𝑖∶ 𝑜1, 𝑜2, 𝑜3, and consider a preference profile given in
he following table:

≻𝑖 ≻𝑗 ≻𝑘 ≻𝓁

𝑜1 𝑜1 𝑜2 𝑜2
𝑜2 𝑜2 𝑜1 𝑜1
𝑜3 𝑜3 𝑜3 𝑜3

At these preferences, the boxed allocation, denoted 𝛼, is easily seen
to be rank-minimizing. Since 𝑗 chooses first in the SD phase of the

echanism, she will eliminate all 𝛼′ ∈ ̄(≻𝐼 ) such that 𝛼′𝑗 ≠ 𝑜1.

laim 3. Let 𝛼′ ∈ ̄(≻𝐼 ) be such that 𝛼′𝑗 = 𝑜1. Then, 𝛼′𝑖 = 𝑜3.

To see this claim, simply note that if 𝛼′𝑖 = 𝑜2, then one of 𝑘 or 𝓁 must
e assigned 𝑜3, and so the total sum of ranks at 𝛼′ is 7. The allocation
denoted in boxes has total sum of ranks equal to 6, and so 𝛼′ is not

ank-minimizing, which is a contradiction.

22 This is the point at which the proof breaks down for the general case
beyond unit capacity). In the general case, it is possible that the first choice
f agent 1 and 2 has more than one unit of capacity, and so they both might
eceive it.
8

The upshot of the above claim is that after 𝑗 moves in the serial
dictatorship phase of the mechanism, the only allocations remaining
for 𝑖 to choose from at the second step have 𝛼′𝑖 = 𝑜3. Thus, we have
ax≻−𝑖 �̄�(𝜓(≻𝑖, ≻−𝑖)) = 3.

Consider a false report ≻′
𝑖∶ 𝑜2, 𝑜1, 𝑜3. We claim that max≻−𝑖 �̄�(𝜓(≻

′
𝑖

≻−𝑖)) < 3. Assume not, i.e., max≻−𝑖 �̄�(𝜓(≻
′
𝑖 , ≻−𝑖)) = 3, and choose some

′
−𝑖 such that �̄�(𝜓(≻′

𝑖 , ≻
′
−𝑖)) = 3. Let the set of available allocations

hen it is 𝑖’s turn to choose in the serial dictatorship be 𝐴′. Since
̄(𝜓(≻′

𝑖 , ≻
′
−𝑖)) = 3, this implies that for all 𝛼′ ∈ 𝐴′, we have 𝛼𝑖 = 𝑜3,

hich implies that both 𝑜1 and 𝑜2 are filled to capacity with other
gents. In particular, at all 𝛼′ ∈ 𝐴′, there are two agents assigned to 𝑜2,
nd, since 𝑖 chooses 2nd in the serial dictatorship, at least one of these
gents must be ordered after 𝑖. Assume this agent is 𝑘, i.e., 𝛼′𝑘 = 𝑜2 (the
ame argument works for agent 𝓁). Now, agent 𝑘 must rank 𝑜2 ≻𝑘 𝑜3,
hich means that the preference profile must be one of the following:

≻′
𝑖 ≻′

𝑘
∗ 𝑜2 𝑜1
𝑜1 𝑜2
𝑜3 ∗ 𝑜3

≻′
𝑖 ≻′

𝑘
∗ 𝑜2 𝑜2
𝑜1 ∗ 𝑜3
𝑜3 𝑜1

≻′
𝑖 ≻′

𝑘
∗ 𝑜2 𝑜2
𝑜1 𝑜1
𝑜3 ∗ 𝑜3

.

In the tables, the boxes denote the assignment 𝛼′, while the stars denote
an alternative assignment 𝛼∗ where 𝑖 and 𝑗 swap their objects, and
verything else remains unchanged (we do not show the assignments
f the other agents in the tables). Notice that in the left two panels,
wapping the assignments of 𝑖 and 𝑗 strictly lowers the average rank,
hich means that in fact, the preferences must be that in the right
anel.

To summarize: the preferences of 𝑖 and 𝑘 are in the following table,
nd the assignment 𝛼′ in boxes is such that 𝛼′ ∈ 𝐴′:

≻′
𝑖 ≻′

𝑘
∗ 𝑜2 𝑜2
𝑜1 𝑜1
𝑜3 ∗ 𝑜3

Since 𝛼′ ∈ 𝐴′, this means that 𝛼′ is rank-minimizing at ≻′
𝐼 . As 𝛼∗ has

the same average rank as 𝛼′, 𝛼∗ is also rank-minimizing at ≻′
𝐼 . Further,

since the assignments of all other agents remain the same, 𝛼∗ is not
eliminated by agent 𝑗 at the first step of the serial dictatorship. Thus,
𝛼∗ is in 𝑖’s opportunity set when it is her turn to choose, and thus she
would choose it and receive 𝑜2, which contradicts that max≻−𝑖 �̄�(𝜓(≻

′
𝑖

, ≻−𝑖)) = 3. ■

Proof of Proposition 4

Proof. The proof is by example in a market with three students 𝐼 =
{𝑖, 𝑗, 𝑘} and three objects 𝑂 = {𝑜1, 𝑜2, 𝑜3}. We will build a RM mecha-
nism 𝜓 that is obviously manipulable. To start, consider the following
profile of preferences, ≻1

𝐼 :

≻1
𝑖 ≻1

𝑗 ≻1
𝑘

𝑜1 𝑜1 𝑜1
𝑜2 𝑜2 𝑜2
𝑜3 𝑜3 𝑜3

Denote the allocation in the boxes by 𝛼. Notice that all agents have the
exact same preferences, so any allocation minimizes the average rank,
and a rank-minimizing mechanism can select any allocation at this
preference profile. In particular, we set 𝜓(≻1

𝐼 )(𝛼) = 1, and 𝜓(≻1
𝐼 )(𝛼

′) = 0
for all 𝛼′ ≠ 𝛼.

Next, consider the following preferences for agent 𝑖, ≻2
𝑖 :

≻2
𝑖
𝑜2
𝑜1
𝑜3
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Claim 4. For all ≻′
−𝑖, there exists an 𝛼

′ such that (i) 𝛼′ is rank-minimizing
ith respect to (≻2

𝑖 , ≻
′
−𝑖) and (ii) 𝛼

′
𝑖 ≠ 𝑜3.

roof of Claim 4. Assume not, i.e., there exists a preference profile
′
−𝑖 such that all rank-minimizing allocations with respect to (≻2

𝑖 , ≻
′
−𝑖)

ssign 𝑖 to 𝑜3. Let 𝛼′ be one such rank-minimizing allocation, and thus
′
𝑖 = 𝑜3. Under 𝛼′, either agent 𝑗 or 𝑘 must be assigned to 𝑜2; wlog,
ssume that 𝛼′𝑗 = 𝑜2. Notice that 𝑗 must rank 𝑜2 ≻𝑗 𝑜3; if not, then 𝛼′ is
ot Pareto efficient (𝑖 and 𝑗 can engage in a Pareto-improving trade),
nd so is also not rank-minimizing. Thus, the overall preference profile
ust be one of the following (where 𝑘 receives 𝑜1 by construction,

ut 𝑘’s actual preferences do not matter for the argument, and so are
ndicated by dots):

≻2
𝑖 ≻′

𝑗 ≻′
𝑘

∗ 𝑜2 𝑜1 ⋮
𝑜1 𝑜2
𝑜3 ∗ 𝑜3

≻2
𝑖 ≻′

𝑗 ≻′
𝑘

∗ 𝑜2 𝑜2 ⋮

𝑜1 ∗ 𝑜3
𝑜3 𝑜1

≻2
𝑖 ≻′

𝑗 ≻′
𝑘

∗ 𝑜2 𝑜2 ⋮

𝑜1 𝑜1
𝑜3 ∗ 𝑜3

The boxes in each table indicate the allocation 𝛼′, and the stars indicate
the alternative allocation where 𝑖 and 𝑗 swap: 𝛼∗𝑖 = 𝑜2, 𝛼∗𝑗 = 𝑜3, and
∗
𝑘 = 𝛼′𝑘 = 𝑜1. Notice that in the two leftmost panels, �̄�(𝛼∗) < �̄�(𝛼′),
hich contradicts that 𝛼′ was rank-minimizing. In the rightmost panel,

̄(𝛼∗) = �̄�(𝛼′). Since 𝛼′ was assumed to be rank-minimizing, 𝛼∗ is also
ank-minimizing. However, this contradicts that all rank-minimizing
llocations assign 𝑖 to 𝑜3, and completes the proof of the claim. ■

The upshot of Claim 4 is that we can construct an RM mechanism
uch that, for all ≻′

−𝑖 and all 𝛼′ such that 𝛼′𝑖 = 𝑜3, we have 𝜓(≻2
𝑖 , ≻

′
−𝑖

(𝛼′) = 0.23 So, consider agent 𝑖 of type ≻1
𝑖 . If she reports her true type,

he receives 𝑜3 with probability 1, while if she reports ≻2
𝑖 , she receives

3 with probability 0, and thus, receives some strictly preferred object
ith probability 1. Since the worst case from reporting ≻2

𝑖 is strictly
referred to 𝑜3, while the worst case from reporting ≻1

𝑖 (the truth) is
3, this is an obvious manipulation, and mechanism 𝜓 is obviously
anipulable. ■
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