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1. Introduction

There exists a trade-off between efficiency and fairness in one-sided matching problems. The celebrated deferred ac-
ceptance (DA) mechanism of Gale and Shapley (1962) always produces a fair matching, and in fact produces the most
efficient matching among all fair ones. However, it does not always produce a Pareto efficient matching: there may be un-
fair matchings that Pareto dominate it. Are all unfair matchings equally unfair? We argue that the answer is no, and that
the formal fairness criterion typically used in the literature—stability—excludes many matchings unnecessarily. We propose a
new fairness standard called essential stability, which takes these matchings into account and is not at odds with efficiency.

There are many real-world examples of problems that fit into our framework, but perhaps the largest and most important
is public school choice as instituted in many cities across the United States and around the world. Fairness is a crucial
concern for many school districts because they must be able to justify why one student is admitted to a school and another
is rejected. This is typically done by assigning priorities to each student at each school according to some set criteria (which
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may vary across school districts) and then running a well-defined matching mechanism that takes these priorities and the
student preferences as inputs.

In the one-sided matching framework, the standard approach in the literature is to analyze efficiency from the perspec-
tive of the students (the other side of the market consists of school seats to be “consumed”) and to use the mathematical
definition of stability as a formal fairness criterion.? Given a matching, a student is said to have a (justified) claim to school
A if she prefers A to her assignment and either she has higher priority than another student who is assigned to A or A
has excess capacity. A matching is stable if there are no claims. Stability was introduced by Gale and Shapley (1962) as
an equilibrium concept in a two-sided matching market with agents on both sides, where stability guarantees that no two
agents prefer to be matched to each other than with their assigned partners. In one-sided markets, stability is a fairness
criterion in the sense that stable matchings eliminate justified envy (Abdulkadiroglu and Sénmez, 2003). This allows a school
district to justify why some student j is not admitted to a school A (even though she prefers it) and another student i is: i
has higher priority than j at A. In fact, some authors simply equate the terms fairness and stability (see, e.g., Balinski and
Sonmez (1999)).

In this paper, we use the term “fair” in its normative sense and the term “stable” to describe the aforementioned
mathematical property of a matching. At first glance, the use of stability as the standard for fairness seems very reasonable,
because it ensures that there are no claims. However, this simple definition actually misses a subtle (and important) point:
if a student were to have a claim to a seat at a school, granting her claim displaces a student currently assigned to that
school. This student will then have to be reassigned, and, using the same justification as the initial student, she can claim
her favorite school at which she has high enough priority. This will displace yet another student, and so on. This chain of
reassignments ends in one of two ways, whichever comes first: either (i) the initial claimant is displaced from the school
she claimed or (ii) a displaced student is reassigned to a school with an empty seat or takes her outside option. In the
former case, the initial claimant ultimately does not receive the school to which she laid claim, and so the claim is vacuous.

We propose a new definition that expands the set of stable matchings by allowing vacuous claims. We argue that this
weaker fairness criterion captures the essence of stability as a fairness standard. If a student has a vacuous claim, she does
not have justified envy in the sense that she ultimately will not be matched to the school she claims. For this reason, we
call a matching in which all claims are vacuous essentially stable.

Our first results show that this expansion of the set of admissible matchings is substantive. We show that Kesten’s
EADA mechanism always produces an essentially stable matching (Theorem 1). Since EADA also produces a Pareto efficient
matching (when all students consent), the set of essentially stable matchings always contains at least one Pareto efficient
matching (Corollary 1). This is in contrast to the stable set, which may not contain a Pareto efficient matching. Thus,
essential stability provides a solution to the trade-off between fairness and efficiency.?

We then show that there may be multiple essentially stable and Pareto efficient matchings (Proposition 1). This sug-
gests that other Pareto efficient mechanisms may produce different essentially stable matchings. However, we show that
other classic Pareto efficient mechanisms such as Top Trading Cycles (TTC), a variant of TTC where DA assignments are
used as the endowments (DA+TTC), and Immediate Acceptance (IA), do not always produce an essentially stable matching
(Proposition 2).

Proposition 1 immediately implies that there may not exist a student-optimal essentially stable matching (this con-
trasts with the set of stable matchings which is known to form a lattice). On the other hand, our second main result is
that a student-pessimal essentially stable matching does exist, and is the same as the student-pessimal stable matching
(Theorem 2). We also show that the Rural Hospital Theorem (Roth, 1986) holds for the set of essentially stable matchings
(Proposition 3).

The existence of a student-pessimal essentially stable matching is critical for incentive results regarding essentially sta-
ble mechanisms. By combining this theorem with results from Alva and Manjunath (2019a,b), we show that DA is the only
essentially stable and strategyproof mechanism (Proposition 4). This points to a trade-off among essential stability, Pareto
efficiency, and strategyproofness: a mechanism exists to obtain any two of these properties, but no mechanism achieves all
three. Nevertheless, strategyproofness is a demanding criterion, and recent work by Troyan and Morrill (2020) has inves-
tigated the severity of manipulations. Their results, when combined with our Theorem 2, imply that any essentially stable
mechanism is not obviously manipulable (Proposition 5), and so the incentive problem may not be so severe. Overall, we
believe essentially stable and Pareto efficient mechanisms constitute a potentially attractive alternative class of mechanisms
that are worthy of further theoretical and empirical investigation.

2 some authors use the term “one-sided” to refer to a setting such as the roommate problem where there is a single set of agents and any given agent
can be matched with any other agent in this set. The setting we have in mind is one where there is a set of agents (e.g., students) that match to a set of
objects (e.g., schools).

3 The trade-off is consequential as the efficiency losses from imposing stability can be significant in practice. For example, using data from eighth-grade
assignment in New York City, Abdulkadiroglu et al. (2009) show that, by moving from the DA matching to a Pareto efficient matching, over 4,000 students
could be made better off each year (on average) without making a single student worse off.
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1.1. Related literature

Our paper is related to a growing literature that investigates weaker definitions of stability that are compatible with
efficiency. Most papers in this literature are loosely based on the idea that a student with a claim must propose an alter-
native matching that is free of any counter-claims (and possibly some other conditions too) or else her initial claim can
be disregarded. Work in this vein includes Morrill (2015), who introduces the concept of a just assignment, Alcalde and
Romero-Medina (2017), who introduce the concept of t—fairness, and Cantala and Papai (2014), who discuss the concepts
of reasonable stability and secure stability.* Also very closely related is Ehlers and Morrill (2019), who define a legal set
of assignments, where, in legal terminology, a student i’s claim at a school ¢ is not redressable (and thus can be disre-
garded) unless i can propose an alternative assignment (i.e., matching) that is “legal” and at which she is assigned to c.
They introduce an iterative procedure for finding the set of legal assignments, which is equivalent to the von Neumann-
Morgenstern stable set (Von Neumann and Morgenstern, 1944).° Tang and Zhang (2016) introduce their own new definition
of weak stability for school choice problems that is also closely related to vNM stable sets. While sharing a similar moti-
vation, all are independent properties, and in Appendix C, we show formally that these other concepts are distinct from
ours.

A different strand of related literature focuses on mechanisms (rather than matchings), and in particular on a class of
mechanisms that, besides simply asking students to report their preferences, also asks them if they “consent” to having their
priority violated. The goal is then to use a mechanism that ensures students cannot gain from not consenting, or in other
words the mechanism should be no-consent-proof. This is the original approach taken in Kesten's (2010) paper introducing
the EADA mechanism, and was further expanded by Dur et al. (2019), who show that EADA is the unique constrained
efficient mechanism that Pareto dominates DA and is no-consent-proof.’” While related, there is an important conceptual
distinction between the approaches. Essential stability is a fairness criterion that relaxes stability; no-consent-proofness is
a justification for why, given a particular mechanism, students should affirmatively consent to violations of the classical
definition of stability. In other words, essential stability is a property of matchings (for given preferences and priorities),
while no-consent-proofness is a property of mechanisms, which are conceptually more complex than matchings.®

We believe that essential stability formalizes the normative idea of fairness in a way that is a particularly straightfor-
ward to explain to non-experts, which makes it well-suited for practical applications. This is because understanding essential
stability only requires understanding the difference between a vacuous and a non-vacuous claim, which can be explained
to policy makers by walking them through an example of a reassignment chain, step-by-step, to highlight why essential
stability is a natural notion of fairness. Nevertheless, given the importance of reconciling efficiency and fairness, it is ben-
eficial to have multiple ways to think about the issue, and the other ideas discussed above provide valuable insights and
elegant theoretical justifications for what it means for a matching to be fair. As such, we view our more applied approach
as complementary to this literature.

From a broader perspective, our paper also contributes to a growing literature on how to define stability when agents
may anticipate more than one step of blocking, a question that has received considerable attention in other game-theoretic
contexts. The central concept in this literature is called farsightedness: an outcome is stable if there does not exist a series
of blocks that culminate in better outcomes for every agent who participates in it. Farsightedness was first introduced by
Harsanyi (1974) as a criticism of von Neumann-Morgenstern stable sets. In more recent work, Ray and Vohra (2015) and
Dutta and Vohra (2017) carefully address farsightedness in coalition formation games. Page et al. (2005) and Herings et al.
(2009) consider related issues in network formation games. While similar in the sense that both look more than one step
ahead, the ultimate effect of essential stability is actually opposite to that of farsightedness: farsightedness excludes my-
opically stable outcomes by providing a series of blocks that makes the initial outcome ultimately unstable, while essential
stability includes myopically unstable outcomes by showing that a series of reassignments nullifies the original block. This
allows expanding the set of admissible matchings in order to reach the Pareto frontier.

The remainder of the paper is organized as follows. We formally introduce essential stability in Section 2. Section 3 is
devoted to exploring Pareto efficiency and essential stability. In Section 4, we show that there exists a student-pessimal
essentially stable matching and investigate the consequences of that result. Section 5 concludes. All proofs not in the main
text can be found in the appendix.

4 Reasonable stability was first defined in Kesten (2004).

5 See also Morrill (2016) for an earlier iteration of these results.

6 Ehlers (2007) studies vNM stable sets in the context of marriage markets (see also Wako (2010)).

7 Dur et al. (2019) also have a relaxation of stability called partial stability that exogenously takes a subset of priority violations as allowable. A partially
stable matching is then constrained efficient if it is not Pareto dominated by any other partially stable matching.

8 Of course, the definition of essential stability can (and will) be easily extended to mechanisms in the natural way by defining a mechanism as essen-
tially stable if it always produces an essentially stable matching. While EADA is both no-consent-proof and essentially stable, there is no a priori logical
relationship between the two concepts (see Appendix C for examples of the independence).
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2. Preliminaries
2.1. Model

There is a set of students S who are to be assigned to a set of schools C U {##}. Each student is to be assigned to one
school in C U {@}, where being assigned to @ is interpreted as remaining unmatched or taking some outside option. Each
c € CU{@} has a capacity gq., which is the number of students that can be assigned to it. We assume gg > |S|, which
captures that the outside option is not scarce, i.e., every student has the option to remain unmatched. Let g = (gc)cecuig)
denote a profile of capacities.

Each i € S has a strict (complete, transitive, and antisymmetric) preference relation R; over CU {/}. We use P; to denote
the asymmetric part of R;, i.e., aP;b if and only if aR;b and a # b. We call school ¢ € C acceptable to student i € S if cP;@
and unacceptable otherwise. Similarly, each ¢ € C U {#}} has a strict priority relation >. over S, and we analogously use >,
to denote the asymmetric part of =2

For concreteness, we use the school choice terminology throughout as it is the best-known application; however, the
model can be applied to many other priority-based matching problems, such as the military assigning cadets to branches
(Sonmez, 2013), universities assigning students to dormitories (Chen and Sénmez, 2002), or cities assigning public housing
units to tenants (Abdulkadiroglu and Sénmez, 1999).

A matching is a correspondence p:SUC U {#f} — S UC U {@} such that, for all (i,c) € S x (CU {#}), n(i) € CU {@},
() €S, u(i)=c if and only if i € u(c), and |u(c)| < gq.. A matching v Pareto dominates a matching p if v(i)R;u(i) for
all i € S, and v(i)P;u(i) for at least one i € S. A matching w is Pareto efficient if it is not Pareto dominated by any other
matching v. Note that Pareto efficiency is evaluated only from the perspective of the students, and not the schools. This
is a standard view in the mechanism design approach to school choice, beginning with the seminal papers of Balinski and
Sonmez (1999) and Abdulkadiroglu and Sénmez (2003).

In addition to Pareto efficiency, in many applications (particularly in school choice), market designers also care about
fairness. Given a matching u, we say student i claims a seat at school ¢ € C U {#i} if (i) cP; (i) and (ii) either | (c)| < q. or
i > j for some j e u(c).'9 We will sometimes use (i, c) to denote i’s claim to c. If no student claims a seat at any school,
then we say u is stable. Stability is a fairness criterion in the sense that it ensures priorities are respected: a student only
misses out on a school she wants if that school is filled to capacity with higher-priority students.

Let M denote the set of all possible matchings, and P denote the set of all possible preference relations. A mecha-
nism ¥ : P’ - M is a function that assigns a matching to each possible preference profile that can be submitted by
the students. That is, for any mechanism ¥ and profile of preferences P = (Pj)ics € P'S!, ¥ (P) is the matching deter-
mined by 11{; when the submitted preferences are P. We write v;(P) to denote the school to which  assigns i after the
reports P.

The properties of matchings are adapted to mechanisms by saying the property holds for the mechanism if it holds for
each possible report. That is, mechanism v is Pareto efficient if ¢ (P) is a Pareto efficient matching for all P. Mechanism
¥ is stable if 1 (P) is a stable matching for all P. And, later, we will also address incentives in the reporting game, where
we say ¥ is strategyproof if v;(P)R;v;(P}, P_;) for all i, P = (P;, P_;), and P;. In words, reporting true preferences is a
dominant strategy.

In this paper, we consider five mechanisms that have been proposed in the matching and school choice literature. Each
of these mechanisms is defined as the outcome of a certain algorithm, i.e., for any priority profile, each algorithm defines a
mechanism (mapping from preference profiles to matchings). The mechanisms we consider are:

Student-proposing deferred acceptance (DA; Gale and Shapley, 1962; Abdulkadiroglu and S6nmez, 2003)
Efficiency-adjusted deferred acceptance (EADA; Kesten, 2010)

Top trading cycles (TTC; Shapley and Scarf, 1974; Abdulkadiroglu and Sénmez, 2003)

DA followed by TTC (DA+TTC; Alcalde and Romero-Medina, 2017)

Immediate acceptance (IA, also called the ‘Boston’ mechanism; Abdulkadiroglu and Sénmez, 2003).

DA is the benchmark mechanism in school choice as well as several other applications; in fact, it is used in practice in
many cities including New York, Boston, and New Orleans. The reason for its popularity is that DA is stable, strategyproof,
and Pareto dominates every other stable mechanism. However, the shortcoming of DA is that it is not Pareto efficient. The
other four mechanisms in the list are Pareto efficient; hence, they are not stable. We will define stability more broadly and
show that only one, EADA, is stable under our broader definition. As these mechanisms are standard in the literature, we
relegate formal definitions to Appendix A (except for EADA, which we will define in Section 3).

9 When comparing sets of students, we assume the priority relation satisfies responsiveness (Roth, 1985): for any I C S, any i, j € S\ I, and any c € CU{@},
TU{i} =c 1U{j} whenever i > j.

10" Note that if #P;p(i), and so if i is assigned to an unacceptable school at y, then |u(#)| < qg < |S| and i will claim a seat at @. In this way, our stability
concepts below implicitly incorporate the standard notion of individual rationality. Also, the |u(c)| < g case is often called non-wastefulness and so our
definition also incorporates this standard notion.

11 Since we assume that students have (and report) strict preferences over C U {f}, we write mechanisms as a function of P rather than R.
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2.2. Motivating example

We now present an example that both shows that there may be unstable matchings that Pareto dominate the DA out-
come, as well as highlights the key insight behind the new definition of essential stability which will be introduced in the
next section.

Example 1. Let there be 5 students, S = {i1, i3, i3, 14,15}, and 5 schools with capacity 1, C ={A,B,C, D, E}.12 The priorities
and preferences are given in the following tables,

] v - t‘l i2 Pl?’
2|3 )15 TB |iCx|Bx| fA | D

iy | iz | ig | s | ° [A<]| A [fD| C |[fEx]
i4 i] i2 i3 :

>A|>.B‘>.C‘>D|>E P

The table on the right indicates three different potential matchings, a matching ,LLD (denoted by boxes [J), and two
Pareto efficient matchings p* (denoted by stars *) and ,ufr (denoted by daggers ). The DA matching in this example is ,uD,
which therefore can readily be shown to be stable. It is, however, not Pareto efficient: it is easy to see that it is Pareto
dominated by both p* and wt. This directly implies that u* and u' are both unstable. In fact, at u*, student i4 claims the
seat at C (because ig >c i = w*(C)) and at ,uf', student i3 claims the seat at B (because i3 >p i1 = ;J,T(B)) and student is
claims the seat at D (because i5 >p i3 = uf(D)).

There are simpler examples to show that the DA matching may not be Pareto efficient. We present this one to illustrate
the main point of our paper, which is that not all instability is the same. We argue that p* is truly unstable while ,uﬁ is
not.

To understand our argument, consider ,uT first. Suppose student i3 claims the seat at school B. If we grant i3’s claim and
assign her to B, then student i; becomes unmatched. Student i; must be assigned somewhere, and (using the same logic
as i3), she can ask to be assigned to A, her next most-preferred school where she has higher priority than the student who
is matched to it (student i4). Granting i1's claim just as we did i3’s, she is assigned to A and now student i4 is unmatched.
Student i4 then asks for C, which is her most preferred school where she has high enough priority to be assigned. Student
i is now unmatched, and asks for B,'* which means student i3 is removed from B. In summary, student i3 starts by
claiming B. If her request is granted based on the fact that i3 >p i1, then we must also grant the next request of iy, since
she has the same justification for claiming A as i3 did for claiming B. Continuing, we see that ultimately another student
with higher priority than i3 at B (in this case i3) ends up claiming it, and so i3's initial claim is unfounded, or as we will
call it, vacuous. Student is’s claim to D also begins a chain of reassignments where eventually i4 takes D away, so is's claim
is also vacuous.

Now let us contrast this with the instability found in matching w*. Assume that student is claims the seat at C, and
this request is granted. Following similar logic to the above, i then asks for B, and i3 asks for D. This is the end of our
reassignments because D is the school that i4 gave up to claim C. In this case, the original claimant’s (student i4) request
does not result in her ultimately losing the school she claimed to a higher-priority student, and therefore this claim is not
vacuous in the manner that the claims at ,ufr were.

Thus, both * and u' are unstable, but in different ways (which will be made more precise in the next section). What
is more, the way in which they are different is straightforward. It would be easy to explain to a non-expert why the claims
of i3 and i5 at ,uff are vacuous by showing them the chain of reassignments as we have just done. Qur new definition
of stability is designed to capture this idea and, in the process, recover inefficiencies by expanding the set of permissible
matchings to include those like ,uT, but still exclude those like p*.

2.3. Essentially stable matchings

We now formalize the intuition from the previous example. Recall that, fixing a matching u, we use the notation (i, c)
to denote i’s claim to a seat at c.

Definition 1. Consider a matching & and a claim (i, ¢). The reassignment chain I' initiated by claim (i, ¢) is the list

Pl sl

2 In all our examples, we do not use the outside option @ and so we omit it for simplicity. To formally match the model, it could always be added in at
the bottom of each student’s preference relation.
13 Note that her next most preferred school is A, but school A is now assigned to iy and i, >4 i3, so she cannot get A and must go to B.
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where,
o =i, u®=u, c® =c and, for each k> 1,
o ik € S is the lowest-priority student in u*~1(ck~1) according to > -1,
o uk is defined as: pk(i*) =@, puk(i*=1) = ck=1, and p*(j) = uk=1(j) for all j e S\ {ik¥-1, ik},
e if i¥ =i, the chain terminates,
e if i¥ £ 1, then c¥ € C is i’s most preferred school to which she has a claim at p* if such a school exists; otherwise,

k=@ 1f |uk(c*)| < g, the chain terminates.

For a reassignment chain T initiated by claim (i, ¢) at matching u (that terminates at step K), the final matching u' is
defined as: ul (%) = u(i) if i =i or u(*) =cK if i¥ #£i and uT () = uX () for all je S\ (i¥}.

A reassignment chain ends in one of two ways: either a student j # i claims a seat at a school with excess capacity
(which could be @), leaving i matched to c, or c rejects i. In the first case, i’s claim is valid in the sense that she is still
matched to c¢ at the end of the chain. In the second case, i's claim is not valid in the sense that i is removed from ¢ and so
i’s claim will not be implemented. Formally, we say that claim (i, c) at matching u is vacuous if iX =i in the reassignment
chain initiated by (i, ¢) at @ that terminates at step K.

Definition 2. Matching u is essentially stable if all claims at @ are vacuous. If there exists at least one claim at p that is
not vacuous, u is strongly unstable.

We also define these terms for mechanisms analogously to above. A mechanism v is essentially stable if y(P) is an
essentially stable matching for all P. If ¢ is not essentially stable, then we say that it is strongly unstable.

Returning to Example 1, we can check that p.T is essentially stable, while u* is strongly unstable. As we showed above,
at ,uT, the claims (i3, B) and (is, D) are vacuous, because they ultimately result in the initial claimant losing the seat she
claimed to a higher-priority student. At ©*, on the other hand, the reassignment chain initiated by (i4, C) ends with i4
assigned to C. Thus, is's claim is not vacuous.

Two aspects of our definition for reassignment chains may be of concern. First, if iX =i, then the reassignment chain
immediately ends. But i may still have a claim to school cX that she prefers to u(i). Instead of ending the chain and
matching i to (i), we could match i to cX and let the reassignment chain continue. At the end of that reassignment
chain, i may still be matched to cX (or to another school that she prefers to (i), arguably making her initial claim not
entirely vacuous. Second, some claims in the reassignment chain may themselves be vacuous and therefore should not
be allowable as the reassignment chain progresses. In Appendix E, we propose two alternative definitions of reassignment
chains to show that allowing i to make additional claims or removing vacuous claims within the reassignment chain does
not affect essential stability. We chose Definition 1 over other possible definitions of reassignment chains that would lead
to an equivalent definition of essential stability because it straightforwardly states the essence of the issue; the original
claimant either keeps the seat she has claimed or she loses it, in which case her claim is vacuous.

3. Essential stability and Pareto efficiency

Essential stability relaxes stability in a natural way, thereby increasing the set of matchings that are classified as fair.
Given that stability and Pareto efficiency are mutually incompatible, the main question we investigate is whether there ex-
ists an essentially stable and Pareto efficient (ESPE) matching and, if so, whether there exists a mechanism that always finds
one. In this section, we answer both questions in the affirmative by showing that Kesten’s (2010) efficiency-adjusted de-
ferred acceptance (EADA) mechanism is essentially stable. We then show that, while there may be multiple ESPE matchings,
all of the other common Pareto efficient mechanisms introduced in Section 2 are strongly unstable.

We first show that the EADA mechanism is essentially stable. To prove this, we use the Simplified Efficiency-Adjusted
Deferred Acceptance (SEADA) mechanism. SEADA was introduced by Tang and Yu (2014) as a simplification of the original
EADA mechanism, and they show that the two mechanisms are outcome-equivalent.'* Following their terminology, we say
that a school ¢ is underdemanded at matching w if p(i)Ric for all i. That is, all students who are not matched to c¢ strictly
prefer their own assignment.

The algorithm for the Simplified Efficiency-Adjusted Deferred Acceptance (SEADA) mechanism is the following:

Roundt Compute the DA matching on the submarket (the whole market in the first round) at the beginning of round t.
Identify the schools that are underdemanded, and for each student at these schools, permanently assign them to
their DA matching. Create the submarket for round t + 1 as a market with all the schools in C U {#} that are not
underdemanded in round ¢ and the students who have not been permanently assigned.

14 Kesten (2010) and Tang and Yu (2014) define slightly more general classes of mechanisms that ask students whether they “consent” to having their
priority violated. The definition given below is the version of SEADA in which all students consent which ensures that the resulting matching is always
Pareto efficient.
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Termination The algorithm terminates at the first round T where all students are permanently assigned.
Theorem 1. The matching produced by the SEADA mechanism is essentially stable.

The proof proceeds by considering an arbitrary claim (i, ¢) and then defining two alternative preference profiles, one that
gives i her SEADA assignment when DA is run and one with a DA rejection chain that coincides with the reassignment chain
initiated by the claim (i, ¢) until the reassignment chain terminates. Using the fact that DA is weakly Maskin monotonic
(Kojima and Manea, 2010), we show that both profiles lead to the same DA assignment for i (i.e., i's SEADA assignment
which is not c) and so the reassignment chain must terminate with i removed from c. The full details can be found in the
appendix.

As the EADA or equivalent SEADA mechanism (hereafter we use the notation (S)EADA to reference them) produces a
Pareto efficient matching, the existence of an ESPE matching is an immediate corollary.

Corollary 1. There exists an ESPE matching.

Theorem 1 provides a clear justification for using the (S)EADA mechanism in practice when Pareto efficiency is an
important concern for the school district, because it achieves Pareto efficiency while only allowing vacuous claims. At the
same time, (S)EADA finds just one possible ESPE matching, and a natural question is whether there are others. The next
proposition shows that, while existence is guaranteed, ESPE matchings are not in general unique.

Propeosition 1. There may exist multiple ESPE matchings.
Proof. This proposition is proved with the following example.

Example 2. Let there be 4 students, S = {iq, i2, i3, 14}, and 4 schools with capacity 1, C = {A, B, C, D}. The priorities and
preferences are given in the following tables.

=al>p|>c|>p Pi, | Py, | Piy | Py,
i3 | iy | i2 | ia tA | [D]
i1 | Qg | i3 | i3 1B C | 1D
P I R Sl A

u,D and ,uT are two ESPE matchings. ,u.':' is the DA matching, which in this example happens to be Pareto efficient. ;.LT
is not stable as i1 has a claim to A. However, it is the only claim and the reassignment chain it initiates is

i1—=>A—ip>C—i3—> A—iq;
therefore the claim is vacuous and p! is essentially stable. O
The multiplicity of ESPE matchings naturally raises the question as to whether other well-known Pareto efficient

mechanisms are essentially stable. We answer this question negatively for the three commonly-proposed Pareto efficient
mechanisms that were introduced in Section 2: TTC, DA+TTC, and IA.

Propeosition 2. The TTC, DA+TTC, and IA mechanisms are each strongly unstable.

Proof. We return to Example 1 and show that each of these mechanisms produces a strongly unstable matching. It is
straightforward to calculate that the TTC outcome for Example 1 is the matching p*, which we showed earlier to be
strongly unstable. Next, consider DA+TTC. Since each student has top priority at their DA school, the TTC stage of DA+TTC is
equivalent to the standard TTC mechanism (with no DA stage); hence DA+TTC also produces p*.

We finally consider IA. In the first round, all students except iy are accepted by their first preference. In the second
round, iy can only apply to E as all other schools are full. IA terminates and produces

m (A B C D E
R A A A T

The reassignment chain initiated by the claim (i1, A) is
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ii—>A—>ig—>C—>ip—>B—i3—>C—ig— D —is—E;

therefore, i1's claim to A is not vacuous and ,u” is strongly unstable. O

The possible multiplicity of ESPE matchings directly implies that (S)EADA is not the only ESPE mechanism; however, as
Proposition 2 shows, all of the well-known Pareto efficient mechanisms except (S)EADA are strongly unstable. Finding other
ESPE mechanisms and defining criteria to select the “best” one constitutes an interesting open problem, though one that is
beyond the scope of this paper.

4, Structural and incentive properties

A well-known result about the set of stable matchings is that it forms a lattice, which implies the existence of a student-
optimal and a student-pessimal stable matching. Moreover, the matching produced by DA, which we denote by ,uDA, is the
student-optimal stable matching; that is, 4 Pareto dominates all other stable matchings. We denote by u” the student-
pessimal stable matching, which is the matching that is Pareto dominated by all other stable matchings. Formally, for any
stable matching ¢ and any student i, MDA(i)R,vu,(i)R,-uP(i). This begs the questions of whether there exist analogously
defined student-optimal and student-pessimal essentially stable matchings. The possible multiplicity of ESPE matchings di-
rectly implies a negative answer to the first question but our next result provides an affirmative answer to the second
question.

Theorem 2. .? is the student-pessimal essentially stable matching.

As it turns out, Theorem 2 has important implications for the incentive properties of essentially stable mechanisms,
which we present at the end of this section (Propositions 4 and 5).

Theorem 2 relies on three properties of a reassignment chain started by a (vacuous) claim in an essentially stable
matching. Let @ be an essentially stable matching and consider the reassignment chain I" initiated by the claim (i,c) at
. As [ is essentially stable, (i,c) is a vacuous claim and so I' ends when c rejects i. Let K be the number of steps of
that reassignment chain and recall that u” denotes the final matching obtained after I'" is carried out. We say that the
reassignment chain I" affects student j € S if u(j) # u'(j) and school d € C U (@} if u(d) # p!(d). Our first result states
that T" affects students and schools in a monotonic way.

Lemma 1. For every student j and every school d that is affected by T":
HPRT() and  u"(@d) >q ().

The statement related to schools is straightforward. At each step, a school replaces a student by another with a higher
priority; therefore, by the end of the reassignment chain, it is assigned a set of students with a higher priority overall.

The statement related to students is not as obvious. A student is assigned to her favorite school to which she has a claim
and may prefer that school to the one that just rejected her. However, as we formally show in the appendix, that school
(and any others she subsequently claims that she prefers to her original assignment) always rejects her before the end of
the reassignment chain.

Throughout a reassignment chain, students get matched to the school they prefer among those to which they have a
claim; therefore any student who is affected by I does not have any claim at u!. As students who are not affected by
I' remain matched to the same school and schools have weakly higher-priority students, the reassignment chain does not
create any new claim, as we next formalize:

Lemma 2. If student j € S has a claim to school d € C U {#} at ¥, then j has a claim to d at ju.

Every claim at u' is a claim at g and, because y is essentially stable, any such claim is vacuous at g. A natural
question at this point is whether such a claim can become non-vacuous as a result of a reassignment chain. As we show in
the appendix, this is not the case, which implies that reassignment chains preserve essential stability:

Lemma 3. " is essentiaily stable.

The proofs Lemmas 1-3 can be found in the appendix. With these lemmas in hand, we can now prove Theorem 2.
Proof of Theorem 2. Consider any essentially stable matching p # uP. Either w is stable, or there exists a claim (i, c) at
. In the latter case, it is possible to carry out the reassignment chain I' induced by that claim in order to obtain ul. By

Lemmas 1 and 3, u! is Pareto dominated by g and is essentially stable. By Lemma 2, any claim at u! is a claim at u.
In addition, (i,c) is a claim at @ by assumption but, as ¢ rejects i at the end of T, it is not a claim at ,ur. Combining
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the last two statements implies that w! has strictly fewer claims than . So, starting from i, it is possible to carry out
reassignment chains, one at a time, until a stable matching v that is Pareto dominated by w is found. By definition, v Pareto
dominates pP; therefore ;o Pareto dominates uf. 0O

Reassignment chains initiated by a claim at an essentially stable matching are similar in spirit to rotations (Irving, 1985;
Irving and Leather, 1986). Starting from any stable matching other than wP, it is possible to carry out a rotation to obtain
a stable matching that makes all affected students worse off and assigns higher-priority students to all affected schools. As
Lemmas 1 and 3 show, reassignment chains achieve the same for essentially stable matchings.

Our analysis reveals an asymmetric structure since an extreme matching exists on one end but not on the other. Clearly,
our negative result implies that the set of essentially stable matchings does not form a full lattice (as the set of stable match-
ings does); however, given the existence of a student-pessimal essentially stable matching, it seems natural to think it may
form a semilattice (more precisely, a meet-semilattice with respect to the partial order R). We provide a counterexample in
Appendix D to show that, perhaps surprisingly, this is in fact not the case.

Another important property of stable matchings is that the schools that are not filled to capacity are assigned the same
set of students at all stable matchings, a property often referred to as the Rural Hospital Theorem (Roth, 1986). We can also
use Lemmas 1-3 to show that this property extends to essentially stable matchings.!”

Proposition 3. (Rural Hospital) For any two essentially stable matchings u and (' and for every school d € C U {@}, |u(d)| < qq
implies p(d) = u'(d).

Proof. Consider an essentially stable matching pt. Let d be a school such that | (d)| < g4. That school is not affected by any
reassignment chain initiated by a claim (i, ¢), as otherwise the reassignment chain would end immediately and i’s claim
would not be vacuous. As in the proof of Theorem 2, starting from p, carry out the reassignment chains until a stable
matching v is found. As d is not affected by any of these reassignment chains, p(d) = v(d). As shown by Roth (1986),
v(d) = v'(d) for any two stable matchings v and v’. Combining the last two statements yields the desired result. O

A common interpretation of the Rural Hospital Theorem is that the same students are unmatched at all stable matchings.
This statement is implied by Proposition 3 as gy > |S|, and therefore @ is not filled to capacity.

4.1. Incentive properties

Theorem 2 allows us to answer important questions regarding the incentive properties of essentially stable mechanisms.
Alva and Manjunath (2019a,b) call a mechanism stable-dominating if it always produces a matching that weakly Pareto
dominates at least one stable matching. By Theorem 2, every essentially stable matching weakly Pareto dominates the
student-pessimal stable matching; therefore, every essentially stable mechanism is stable-dominating. Combining this result
with Corollary 5 of Alva and Manjunath (2019b) which shows that DA is the only strategyproof and stable-dominating
mechanism,'® we conclude the following:

Proposition 4. DA is the only essentially stable and strategyproof mechanism.

By Proposition 4, all other strategyproof mechanisms besides DA are strongly unstable. More broadly, our results shed
a new light on the trade-off between fairness, efficiency, and strategyproofness. Proposition 4 shows that no mechanism
can achieve all three properties. Among strategyproof mechanisms, the trade-off between efficiency and fairness is very
well understood and effectively comes down to choosing between DA and TTC. Qur definition opens up a third option:
combining efficiency and fairness by using an ESPE mechanism. This trade-off is illustrated in Fig. 1.

We believe there are good reasons to at least seriously consider using an ESPE mechanism. First, as discussed in foot-
note 3, the inefficiency of DA is sizeable. Second, just because a mechanism is not strategyproof does not necessarily imply
that it will be manipulated in practice. Building on the recent work of Li (2017) on obviousness in mechanism design, Troyan
and Morrill (2020) argue that the existence of some manipulations may be tolerable, so long as these manipulations are not
obvious manipulations, More formally, given a student i with true preferences P;j, Troyan and Morrill (2020) define a ma-
nipulation P] as obvious if either (i) the worst possible outcome from reporting P] is strictly better than the worst possible
outcome from P; or (ii) the best possible outcome from P; is strictly better than the best possible outcome from P;. Anal-
ogously, a mechanism is obviously manipulable if there is an obvious manipulation. They show that no stable-dominating
mechanism is obviously manipulable, which by Theorem 2 implies the following:

Propeosition 5. No essentially stable mechanism is obviously manipulable.

15 An alternative proof of this result can be obtained by combining our Theorem 2 with Lemma 2 and Proposition 2 of Alva and Manjunath (2019a), who
show that the Rural Hospital Theorem holds for all stable-dominating matchings. We discuss stable-dominating matchings below.
16 proposition 2 of Alva and Manjunath (2019a) can also be used to obtain this result.
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Essentially Stable Pareto Efficient

EADA with partial
consent (and others)

Stable EADA

(and others)

DA+TTC, IA
(and others)

All stable
mechanisms
except DA

TTC
(and others)

Random Allocation (and others)

Strategyproof

Fig. 1. Classification of mechanisms. The gray areas represent combinations of properties that no mechanism can achieve.

Given the restrictive nature of strategyproofness, real-world markets often make use of non-strategyproof mechanisms,
and many do so quite successfully. While this does not mean that incentives should be ignored, Proposition 5 suggests
that ESPE mechanisms may provide a satisfying alternative in practice. Ultimately, the choice between stronger incentive
properties and greater efficiency is up to policy makers and more theoretical, experimental, and empirical investigations are
needed to inform this trade-off.

5. Conclusion

This paper introduces the concept of essential stability, a weakening of classical stability that allows a matching to have
some priority-based claims to seats at schools as long as those claims are vacuous. The motivation for this definition is
twofold. First, it is compatible with Pareto efficiency, which can significantly improve the welfare of participants. Second,
it still adheres to the principle behind imposing stability as a fairness criterion in the first place: students should not have
valid claims. The definition is simple enough that it can easily be explained to non-experts as a reasonable standard of
fairness, which we believe constitutes a key advantage for the purpose of practical implementation.

Our paper opens several avenues for future research. First, the existence of multiple ESPE matchings raises the question of
whether some can be argued to be more desirable than others. If these matchings could be compared in a meaningful way,
it may be possible to improve upon the EADA mechanism by selecting the “best” ESPE matching in each market. Second,
essential stability could constitute a useful concept beyond the model studied in this paper; it could prove particularly
valuable, for example, in settings where a stable matching is not guaranteed to exist, such as “roommate” matching markets
or matching markets with couples.”” While the right formal definition will likely depend on the particular setting, we hope
that the ideas in this paper provide inspiration for thinking about how to appropriately define a fairness criterion that is
not only compatible with efficiency, but is also intuitive and convincing to policymakers and market participants.

Declaration of competing interest

None.

17 See Hirata et al. (2019) for a related solution concept in the roommate problem.
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Appendix A. Mechanism definitions

In this section, we provide brief definitions of the algorithms that determine the matchings for the following mecha-
nisms: DA, TTC, DA+TTC, and IA.

A.1. Deferred acceptance (DA)

Round t All students apply to their most-preferred school ¢ € C U {##} that has not rejected them. Each school ¢ tentatively
accepts the g, highest-priority students among those who have applied to it (or all, if fewer than g, apply), and
rejects the rest.

Termination The algorithm terminates at the first round T where no students are rejected and then students are perma-
nently assigned to the schools they are tentatively accepted by in this round.

A.2. Top trading cycles (TTC)

Round t Each student i in the submarket at the beginning of round t (the whole market for t = 1) points to i's most-
preferred school in the submarket and each school ¢ in the submarket points to ¢’s highest-priority student in the
submarket. Find all the cycles: ordered lists where i1 points to c; who points to i etc. ending in c; pointing to iq
for some k. All students in cycles are permanently assigned to the school they point to. Create the submarket for
round t + 1 as a market with all the unassigned students and all the schools with capacity q,,, > 0 where q.,,,
is calculated as qc, less the number of students assigned to c in round t (where g;, =qc).

Termination The algorithm terminates at the first round T where all students are permanently assigned.

A.3. Deferred acceptance + top trading cycles (DA + TIC)

DA round Run the deferred acceptance algorithm. Let ,uDA be the resulting matching.

TICround For each school c, create a new priority relation >/ from > by raising all students in #P4(c) to the top of >
(and otherwise keeping the order of students unchanged). Run the TTC algorithm using the student’s preferences,
and the new priority relations.

A.4. Immediate acceptance (IA)

Round t Each student i that is not assigned at the beginning of round t applies to the t!"-ranked school on their preference
list. For each school ¢, the g, -highest priority students among those who applied to ¢ in round t are permanently
assigned to ¢ (or all if fewer than q., apply), where g, , is calculated as g, less the number of students assigned
to ¢ in round t (where q¢, = qc).

Termination The algorithm terminates at the first round T where all students are permanently assigned.

Appendix B. Omitted proofs

In this appendix, we provide proofs of all results that were not proved in the main text. We first present the proof of
Theorem 1 and then the proofs of all remaining lemmas (including those from the main text and those introduced in the
proof of Theorem 1).

B.1. Proof of Theorem 1

In addition to the notation in the main text, we use two more pieces of notation in this proof. First, we denote by uf
the matching after round t of SEADA consisting of the permanent matching for all students who have been removed at a
round before t and the round ¢t DA matching for all other students. Let T be the number of steps in the SEADA algorithm so
1T is the matching produced by SEADA. Second, we denote by DA(P), the DA matching when students report preferences
P with DA;(P) being student i's matching.

Consider some arbitrary claim (i,c) at u”, and let I" denote the reassignment chain initiated by this claim.'® We will
show tlléat student i must be rejected from c at some point in T, and hence the claim (i, ¢) is vacuous, and u” is essentially
stable.

18 If there are no claims, then the matching is stable, and so is also essentially stable trivially. Also, it7 is nonwasteful, and so any claim (i, ) must be

because there exists some j € uT(c) such that i >, j.

19 In an earlier version of this paper, we also prove that every round t matching u! is essentially stable. For simplicity, we focus on the most important
T

one, i', here.
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We start with the following monotonicity lemma, part (i) of which is due to Kojima and Manea (2010). To state it, say
that a preference relation P/ is a monotonic transformation of P; at c € CU {#} if bPjc = bPjc. Preference profile P’ is a
monotonic transformation of P at a matching u if P} is a monotonic transformation of P; at u(i) for all i.

Lemma 4. (i) If P’ is a monotonic transformation of P at DA(P), then DA;(P")R;DA;(P) for all students i € .
(ii) If P" is a monotonic transformation of P at DA(P), thenDA;(P")R;DA;(P) for all studentsi € S.

Now, consider again the claim (i,c) at u”. Because DA on the round T submarket is stable, only students who were
removed in a round strictly earlier than T (the final round) can have a claim. That is, i must have been removed in some

round £ < T. Define an alternative preference profile Pt as follows: for any student j removed before round £, PE ranks her

assignment ,uf( j) first, and the remaining schools in the same order as the true Pj; for all j not removed before round £,
Pf,. = P;. Note that this is a simple way to describe preferences so that DA(P") = ut20

Define a second preference profile P as follows: for each j#1, P j ranks ,uT( J) first, and every other school is listed in
the same order as the true P;, while for student i, P; ranks c first and the remaining schools in the order of the true P;.

Lemma 5. DA;(P) = DA;(PH) = " (i).

The lemma is formally proved in the “Proofs of lemmas” subsection that follows the proof of this theorem, but the main
step is that P is a monotonic transformation of Pt at DA(P!). Now, it is well-known that the following is an alternative
description of the DA mechanism (McVitie and Wilson, 1971; Dubins and Freedman, 1981):

DA At each step t, arbitrarily choose one student among those who are currently unmatched, and allow her to apply
to her most preferred a school that has not yet rejected him. All schools other than a tentatively hold the same
students as the last step. School a holds the highest-priority students up to their capacity among those held from
last step combined with the new applicant and reject the (at most one) other.

In this new method, the choice of the applicant at each step is arbitrary, in the sense that the order in which they are
chosen does not affect the final outcome. So, for any fixed preference profile, one way to find the DA outcome is to have i
be the last student chosen to enter the market. That is, as long as there is some other student besides i who is tentatively
unmatched, we always choose one of these students to make the next application. Once all of these students have been
(tentatively) assigned to a school, we allow i to enter by applying to the first school on her preference list. Student i's
application then initiates a rejection chain, where i applies to some school a, a rejects its lowest-priority student il, i
applies to her most preferred school that has not yet rejected her, and so on, until we reach a school (which could be @)
with an empty seat, at which point the rejection chain (and the entire DA mechanism) end, and all tentative matchings are
made final.

Run DA(P) with the alternative method by letting each student j i make applications in any arbitrary order. By
construction of P, each j applies to @ (j) and is tentatively matched to u” (j). No rejections occur because each j+#i is
assigned to the unique seat to which she is assigned at w. Now, again by construction of P, when i enters, she begins by
applying to c. We can index the rest of the steps of DA as a chain of rejections, which we denote E, where

Step E(I) : “student i¢ applies to school a¢ which rejects student i¢+1”.

This chain of rejections eventually terminates at some L when a student applies to a school with a vacant seat (perhaps @).
When a student i1 is rejected, she goes to the next school on her list and applies. It may be the case that when a student
applies to a school, she is rejected immediately, and must continue down her list. Formally, if i # i¢*1 we say step B(£) is
effective. If a step is ineffective (i® = i¢*1), then the same student who applied is also the one rejected, and nothing would
change if i simply skipped her application to af. Let &’ be an alternative rejection chain that deletes all of the ineffective
steps of E. Deleting ineffective steps has no effect on the final outcome, and so the final matching at the end of E and E’
is the same, and by construction, is DA(P).

The key now is that the (initial) steps of E’ are the same as the steps of the reassignment chain I'. Recall from above
that all students j i are tentatively matched to the same school when i enters under DA(P) as they are matched to
when I" begins (namely, school u” (j)). Consider step 1. In the former case, a student j is rejected from her initial school
¢ = uT(j). The rest of her preference list I_’j coincides with her true preferences P; so she goes down her true list P; until
she reaches a school where she has higher priority than some tentatively matched student. This is the same as step 1 of the
reassignment chain I". We now have a new tentative matching for DA that is the same as the £ =1 matching for I, and the

20 Raising school ,uf(j) for all j removed prior to round f to the top of her preferences is a way to effectively “remove” student j from the market,
because no student who has not been removed prior to round f will ever apply to such a school because it is underdemanded.
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same student i' who is tentatively unassigned and will make the next application. Using the same argument, the second
step of E’ leads to the same tentative matching as the ¢ = 2 matching. By Lemma 5, DA;(P) = 1T (i) so some step of &’
corresponds to ¢ rejecting i. Given our argument that the steps are the same as in T, this corresponds to i being removed
from c in T, and thus T ends at this step and the claim is vacuous.?! O

B.2. Proofs of lemmas

Proof of Lemma 1. As we argued in the main text, schools receive higher-priority students throughout a reassignment chain,
which directly implies the second part of the statement. We therefore focus on the first part of the statement, that is we
show that students who are affected by I" are worse off after T is carried out.

Let j € S be a student who is affected by " (i.e., u' (j) # p(j)). For ease of notation, let d = ! (j). In addition, for any
matching v € M and any school e € C such that |v(e)| =g., we denote by v(e) the lowest-priority student in v(e).

As j e uT(d)\ pe(d), d is affected by T". Then, d is filled to capacity throughout I" as, otherwise, I' ends whenever a student
moves to d, which contradicts the assumption that the claim (i, ¢) is vacuous at w. In particular, |u(d)| =| ,u.r(d)l =(qq and
j € 1T (d) implies that j >4 uT (d). Moreover, as d is affected by I and schools receive higher-priority students throughout
a reassignment chain, we have ' (d) =4 ;(d). Combining our last two statements yields j =4 f4(d).

Towards a contradiction, suppose that dP ju(j), that is j is better off after I' is carried out. Then, j >4 @ (d) implies that
Jj has a claim to d at w. That claim is vacuous since w is essentially stable. Let -

j=jl—d=d"-jl 5d'... > jl ' s d=d" 1> j=jt

be the reassignment chain initiated by (j, d) at w«, which we denote by A. Because (j, d) is a vacuous claim, A ends at some
step L, where j is removed from d. Analogously to Definition 1, for every £ =0,1,..., L, let v be the matching obtained
at step £ of A. For every school e € C, we define ¢' (e) as follows. If | (e)] < ge, then ¢ (e) = uT(e). If [u' (e)| = qe, then
oT(e)=ul(e)U{heS: ul(e) = h}. In words, ¢' (e) contains all those students who are either matched to e at u” or such
that e is filled to capacity with higher-priority students.

Our argument proceeds by induction to prove the following statement:

Forall £=1,...,L and for every school e € C, vi(e) C ¢"(e).

We begin by showing that our statement is satisfied for £ = 1. Consider any school e € C and recall that, by definition,
V0 = . If w(e) € ul(e), it follows immediately that v°(e) = u(e) € ¢ (e). Otherwise, all of the students in w(e) \ u'(e)
are removed from e along T'. Because schools receive higher-priority students throughout a reassignment chain, it follows
that |u' (e)| = ge and all of the students in u(e) \ u' (e) have a lower priority than T (e) at e. We conclude that v0(e) =
w(e) € ¢l(e). For all e e C\ {d, w(j)}, v°(e) = v'(e) while v1((j)) = WO()) \ (i} € ¢ ((j)); therefore it remains to
show that v1(d) € ¢T (d). By construction, v1(d) c (v2(d) U {j}). As j € u'(d) € ¢T(d), v'(d) C ¢" (d), as required.

We next suppose that our statement is satisfied for some £=1,...,L — 1 (induction hypothesis) and show that it is
then also satisfied for £ + 1. For every e € C \ {d‘}, v¥(e) = v**1(e); therefore the induction hypothesis directly implies that
vEtl(e) € ¢l (e). Moreover, by construction, vé+1(dt) c (vE(d%) U {j¢)); therefore it remains to show that j¢ € ¢ (df). (Note
that d® £ ¢ as, otherwise, A would end after ¢ < L steps.)

We first show that, at vf, ul'(j% is not filled to capacity with students who all have a higher priority than j¢. This
is trivially the case if |vé(u" ()| < qyrje). I V8T GO = gyr(je), we need to show that j¢ =, r ey v¥(u"'(j*)). By the
induction hypothesis, v¢(ul(j€)) € ¢ (! (j©)); therefore v(uT (j¢)) has at best the qﬁ‘r(jf) highest priority among students
in ¢U'(uL'(j9). By construction, any student in u' (1! (j%)) (including j*) has at least the qi‘r(jé) highest priority among
students in ¢ (u"(j*)). Therefore, j© > ,r ey v (" ().

We now conclude our inductive argument by showing that j¢ € ¢T(d%). By definition, our previous result that w! (j*) is
not filled to capacity with students who all have a higher priority than j¢ implies that d“R ;¢ "' (j*); otherwise j¢ would be
matched to u'(j¢) (or a more preferred school) rather than df. If d = u''(j*), then j e ul(d®) € ¢" (d%) and the inductive
argument is complete. We devote the remainder of our argument to the case where d‘P jt ,uF( ©). By construction, j¢ has
been removed from w(j¢) before step £ of A; hence [VE(u(j)| =g, ey and vE(U(j©) >, ey J*. As @ is never filled to
capacity, it directly follows that p(j*) # @; therefore our induction hypothesis applies and yields v¢(u(j%)) € o7 (i (j%)).
Then, by construction, j¢ € ' (u(j*)) would imply j¢ >, e, vE((j®)), a contradiction. It follows that j¢ ¢ u”(u(i%)),
or equivalently u(j*) # u''(j*). Consequently, j¢ is matched to u!(j*) at some step of I'. At that point, d* is filled to

21 Technically, the reassignment chain I goes back to the top of Pj every time j needs an assignment while the rejection chain goes to the next school
in !-’J-. but they are equivalent here. This is because, as the reassignment chain progresses, the lowest priority of all the students matched to any school
only increases, and so, even though j keeps going back to the top of the list in the reassignment chain, once j has been rejected from a school, she will
continue to be rejected, and it is equivalent for her to just start with the next school down the list. Since all schools other than the top school under F’j
are in the same order as Pj, the next (effective) school that j applies to will be equivalent under both scenarios.
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capacity with students who all have a higher priority than j¢; otherwise our assumption that dP i 1l (j%) would imply

that j¢ is matched to d (or a more preferred school) rather than u” (j). As schools get higher-priority students throughout
a reassignment chain, it follows that |u(d%)| = g4 and w"(d%) >4 j°. Then, by definition, we have j¢ e ¢T (d%), which
concludes our inductive argument. -

On the one hand, j is removed from d at step L of A, which means that |[v!(d)| = g4 and v(d) >4 j. On the other
hand, we have established through our inductive argument that vi(d) € ¢' (d). Then, by construction, j € p,r(d) implies
j>qvi@), a contradiction. O

Proof of Lemma 2. Suppose that j has a claim to d at u”; we need to show that j has a claim to d at u. By assumption,
dP; ' (j) and ul(d) contains at most gg — 1 students who have a higher priority than j at d.

Suppose first, towards a contradiction, that j is affected by T, i.e., u!(j) # u(Jj). In that case, j is matched to ul(j)
somewhere along T, ie., i¥=j and ¥ = ul(j) for some k=1,..., K — 1. By definition, u(j) is j's most preferred school
to which she has a claim at ,u"; therefore, as dP j,ur( j), j does not have a claim to d at ,u". Then, p."(d) contains g4 students,
all of whom have a higher priority than j at d. As schools receive higher-priority students throughout a reassignment chain,
the same is true of u” (d), a contradiction.

We have established that ,ur(j) = p(j), which directly implies dP;ju(j). As ,u,r(d) contains at most gg — 1 students
who have a higher priority than j at d and schools receive higher-priority students throughout a reassignment chain, w(d)
contains at most gy — 1 students who have a higher priority than j at d. Combining our last two findings implies that j has
aclamtodatu. O

Proof of Lemma 3. Consider a claim (j,d) at #T'; we need to show that this claim is vacuous. By Lemma 2, (j, d) is a claim
at w and, as w is essentially stable, it is vacuous. The remainder of the proof follows a similar inductive argument to the
one presented in the proof of Lemma 1. Let

1

j=j°—>d=d0—>j1—>d1—>---—>j!'* —>d=dL71—>j=jL

be the reassignment chain initiated by (j,d) at u, which we denote by A. Because (j,d) is a vacuous claim at @, A ends
at some step L, where j is removed from d. Analogously to Definition 1, for every £ =0,1,...,L, let v® be the matching
obtained at step £ of A. We denote by A* the reassignment chain initiated by (j,d) at [LF and by pu* = (MF)A*, the
final matching obtained after A* is carried out. For any matching v € M and any school e € C such that |v(e)| = ge, we
denote by v(e) the lowest-priority student in v(e). For every school e € C, we define ¢*(e) as follows. If |u*(e)| < ge, then
¢*(e) = pu*(e). If |u*(e)| = ge, then ¢*(e) = u*(e) U{h € S: u*(e) =, h}. In words, ¢*(e) contains all those students who
are either matched to e at u* or such that e is filled to capacity with higher-priority students. Our argument proceeds by
induction to prove the following statement:

For all £=1,...,L and for every school e € C, v¥(e) € ¢*(e).

We begin by showing that our statement is satisfied for £ = 1. Consider any school e € C and recall that, by definition,
V0 = . If u(e) C p*(e), it follows immediately that v°(e) = u(e) C ¢*(e). Otherwise, all of the students in j(e) \ u*(e) are
removed from e along either I" or A*. Because schools receive higher-priority students throughout a reassignment chain,
it follows that |u*(e)| = g. and all of the students in wp(e) \ w*(e) have a lower priority than p*(e) at e. We conclude
that v%(e) = p(e) S ¢*(e). For all e € C\ {d, ie(j)}, v2(e) = v'(e) while V1 (u(j)) = (VO (()) \ J}) € ¢*(u())); therefore it
remains to show that v!(d) C ¢*(d). By construction, v'(d) c (v9(d) U{j}) and j is matched to d at the beginning of A*;
therefore either j € u*(d) or j is removed from d somewhere along A*, in which case |u*(d)| =qg and u*(d) >4 j since
schools receive higher-priority students throughout a reassignment chain. We conclude that j € ¢*(d), which implies that
vi(d) € ¢*(d), as required.

We next suppose that our statement is satisfied for some £ =1,...,L — 1 (induction hypothesis) and show that it is
then also satisfied for £+ 1. For every e € C \ {df}, v¢(e) = v**1(e); therefore the induction hypothesis directly implies that
vitl(e) € ¢*(e). By construction, v+ (d%) < (v¥(d?) U {j’}); therefore it remains to show that j* e ¢*(d%). (Note that d’ £ &
as, otherwise, A would end after £ < L steps.)

We first show that, at v¢, u*(j%) is not filled to capacity with students who all have a higher priority than j¢. This
is trivially the case if [VE(u*(G))| < qye(jey- If [VE(U*(GE))| = qys(jey, We need to show that j¢ >, . ey VE(*(j9)). By the
induction hypothesis, vE(u*(j©)) € ¢*(u*(j4)); therefore v(u*(j¢)) has at best the qif* ¢, highest priority among students
in ¢*(u*(j%). By construction, any student in p*(u*(j¢)) (including j¢) has at least the qﬁ‘,(jg) highest priority among
students in ¢*(u*(j*)). Therefore, j > . ey E(* (j)).

We now conclude our inductive argument by showing that j¢ € ¢*(d®). By definition, our previous result that w*(j¢) is
not filled to capacity with students who all have a higher priority than j¢ implies that d*R ;e pu*(j¢); otherwise j¢ would be
matched to p*(j%) (or a more preferred school) rather than d®. If d¢ = u*(j%), then j e u*(d*) < ¢*(d*) and the inductive
argument is complete. We devote the remainder of our argument to the case where d¢ Pje w*( 9. By construction, j¢ has
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been removed from 1(j¢) before step £ of A; hence [vE((j)| =g,y and VE((®)) > ey J¢ As @ is never filled to
capacity, it directly follows that ,u( j4 #£ @ therefore our induction hypothesis applies and yields v:(u(j%)) € ¢* (L (jO).
Then, by construction, j¢ € pw*(u(j%)) would 1mply JE = e vEr(®), a contradiction. It follows that j© ¢ w*(u(j%)), or

equivalently p(j%) # u*(j%). Consequently, j¢ is matched to p*(j%) at some step of either I" or A*. At that point, d is
filled to capacity with students who all have a higher priority than j¢; otherwise our assumption that d¢P it wr( 75 would
imply that j¢ is matched to df (or a more preferred school) rather than w*(j¢). As schools get higher-priority students
throughout a reassignment chain, it follows that |u*(d®)| = g and p*(d%) >4 j¢. Then, by definition, we have j¢ e ¢*(d®),
which concludes our inductive argument. -

On the one hand, j is removed from d at step L of A, which means that |v-(d)| = g¢ and v'(d) >4 j. On the other
hand, we have established through our inductive argument that vl (d) C ¢*(d). If j's claim to d at u! is not vacuous, then
jepu*d). As |vi(d)| =qq and vi(d) € ¢*(d), it follows by construction that j >4 v(d), a contradiction. O

Proof of Lemma 4. Part (i) is shown in Kojima and Manea (2010), and they refer to this property as weak Maskin mono-
tonicity. For part (ii), consider a student i, and let DA;(P) =a and DA;(P") =d’. If a=d’, then it is immediate. Otherwise,
by part (i), we have a'Pja. Since P; is a monotonic transformation of P; at a, a'Pja implies a’'Pja. O

Proof of Lemma 5. We start by showing that P is a monotonic transformation of P! at DA(P) For each j € S, let
DA}(P ) =aj. For all j removed from the market at some round t <t wi) = () = aj. Thus, both Pt and PJ rank

school a; first, and Pj is trivially a monotonic transformation of Pt at a; for these students.
Next, consider the students who are still in the market at the begmmng of round £, and note that for all such students,
P = P;. Consider some such j#i. By Lemma 2 of Tang and Yu (2014), u T(HR ja; for all j. Since Pt = P;, this further

1mp11es that 7 ( j)RSiﬂ j. Now, consider preference profile P; j- P; j simply raises (o T(j) to the top of the ordering, without
altering the relative rankings of any other seats (in particular, no schools “jump” over student j’s round f assignment a j in
the move from Pg. to P;), and so P; is a monotonic transformation of P; at g; for all j#i.

Last, consider student i. She is removed in round £, and so cPfai (otherwise, student i would not claim a seat at ¢ at
uT).22 By similar logic (no school a’ “jumps” over g; in going from P to P;), P; is a monotonic transformation of P at g;.
Thus, we have shown that P j is a monotonic transformation of Pj, at DA j(Pf) for all j €S, and so preference profile P is a

monotonic transformation of preference profile Pl at DA(Pf)
Finally, given a matching w, say student ] is not Pareto improvable if, for every v that Pareto dominates wu, v(j) = w(j)-

Since P is a monotonic transformation of P at DA(P! ) Lemma 4, part (ii) gives DA; (P)RtDA (Pt) for all j €S, ie., the

matching DA(P) Pareto dominates the matching DA(Pt) with respect to PE. Since i is removed in round f, she must be
matched with an underdemanded school at DA(Pf) which, by Lemma 1 of Tang and Yu (2014), implies that she is not
Pareto improvable (relative to preferences Pf). Since DA(P) Pareto dominates DA(Pf) and i is not Pareto improvable, her
matching does not change: DA;(P) = DA,v(PE). Since i is removed at round f, her assignment at T > f is the same as her
assignment at the end of round £: u7 (i) = DA;(PY). O

Appendix C. Comparison to other definitions in the literature

In this appendix, first we show formally that our definition of essential stability is distinct from other approaches to
weakening stability that have been proposed in the literature by finding matchings that satisfy each of the other definitions
but are strongly unstable under our definition. Both Alcalde and Romero-Medina (2017) and Cantala and Papai (2014) show
that the DA+TTC mechanism satisfies their respective definitions of stability, while we showed in Section 3 that DA+TTC is
not essentially stable. Therefore, the matching p* from Example 1 is t-fair, reasonably stable, and securely stable according
to their respective definitions, but is strongly unstable according to the definition used in this paper.

The definitions of Tang and Zhang (2016) and Ehlers and Morrill (2019) are satisfied by the EADA mechanism and so
it is less obvious that they are formally distinct. However, as we show here, they are not equivalent.”> We first consider
Ehlers and Morrill (2019), who define the concept of a legal set of assignments. In contrast to stability, which is defined on a
matching itself, legality is defined on a set of matchings; i.e., an individual matching x cannot be deemed “legal” or “illegal”

22 Because i is removed in round f, we have u” (i) = yf(f) =a;; because she claims a seat at ¢ at T, we have cP;uT (i); again because i is still in the

market at round £, we have PE = P;. This all implies that cP!-Ea,.
23 In an earlier draft of this paper, we used the arguments below to show that essential stability is different from a related definition of Morrill (2016).
Ehlers and Morrill (2019) supersedes Morrill (2016), though the same argument works for both papers.
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independently, but is only legal in relation to other matchings. Also, note that the model of Ehlers and Morrill (2019) allows
for more general school “choice functions”; the definitions presented here are simplified to apply to our model.?*

A matching u blocks a matching v if there exists some i such that p(i) = aP;v(i) and i >, j for some j € v(a). Then, a
set of matchings L is a legal set if

1. For all i, v €L, p is not blocked by v
2. For all p ¢ L, u is blocked by some v € L.

Example 1 can be used to show that essential stability is different from legality. More precisely, we exhibit a matching
1 that must be included in any legal set of matchings L, but is not essentially stable. To shorten notation, we refer to
a matching by a string of letters representing the school assigned to each student in order of their indices. For example,
(= ABCDE means that iy is assigned to A, i to B, i3 to C, and so forth.

Consider the matching (- = BACDE. We claim that p € L for any legal set L, but w is not essentially stable. Showing
M is not essentially stable is simple. Note that i3 claims the seat at school B, and the reassignment chain that follows is
(i3 - B — i1 = A — i3 — (). Since i3 remains matched to B at the end of the chain, the claim (i3, B) is non-vacuous and
so u is not essentially stable.

Let L be a legal set of matchings. First, note that the DA outcome is uP?# = ABCDE, and uP4 € L for any L (because it
is not blocked by anything). Next, observe that each student i has the highest priority at her DA school. So, i can use the
DA matching to block any other matching v that gives her a school she disprefers to her DA school. This implies that for all
v el, v Pareto dominates P4,

We now show that = BACDE € L. Assume not, i.e., p ¢ L. By part (2) of the definition of legality, there exists some
v € L that blocks it. The only potential student who can block u is i3, who can block with B. Let v be some v € L at which
v(i3) = B. Since v must Pareto dominate x4, there is only one possibility: v = ACBDE.?® Thus, v = ACBDE € L.

Since v € L, there is no p € L that blocks it. Since v can be blocked by any matching p such that p(is) = C, we have
p(ia) = C implies that p ¢ L; in particular, o = ABDCE ¢ L.

Since p ¢ L, there must be some o € L that blocks p. The only student who can block p is is, who can block with any o
such that o (i5) = D. However, any such ¢ has some student who is assigned to a school worse than her DA assignment,?®
which contradicts that every o € L Pareto dominates uP4.

The above shows that essential stability is different from legality of Ehlers and Morrill (2019). In fact, it also shows that
essential stability is different from weak stability of Tang and Zhang (2016) as well. This follows because legal sets are vNM
stable sets (Ehlers and Morrill, 2019), and Tang and Zhang (2016) show that every matching that is in the vNM stable set is
weakly stable in their sense.

Finally, we show that essential stability is independent of the no-consent-proofness property of Dur et al. (2019) by
constructing two mechanisms, each of which satisfies exactly one of the two properties. First, the following mechanism
is no-consent-proof, but not essentially stable: Ask everyone if they are willing to consent to having all of their priorities
violated. If everyone consents, then run the DA+TTC mechanism. If anyone does not, run the standard DA mechanism. Since
DA+TTC Pareto dominates DA, this mechanism is no-consent-proof; however, as we show in the paper, DA+TTC may produce
assignments with non-vacuous claims, and so this mechanism is strongly unstable.

To construct a mechanism that is essentially stable but not no-consent-proof, we use Example 2 (this can easily be
embedded in larger markets). Again, first ask everyone if they are willing to consent to having all of their priorities violated.
If everyone consents and the reported preference profile is the one from the example, output the matching p,T from the
example; otherwise, output the DA matching for the reported preferences. This mechanism is essentially stable, as any DA
matching is essentially stable, and so is ,uT. However, it is not no-consent-proof: when the preferences are those from
the example, i; (or i3 or i4) are better off not consenting, since by doing so they get their DA matching, which they
prefer.

Appendix D. The set of essentially stable matchings does not form a semilattice

As mentioned in Section 4, the existence of a student-pessimal essentially stable matching may intuitively suggest that
the set of essentially stable matchings forms a semilattice. We show in this appendix that this is in fact not the case.

For any two matchings @, v € M, we write uRv if @ weakly Pareto dominates v, i.e., if p(i)R;v(i) for all i € S. The set
of essentially stable matchings forms a meet-semilattice with respect to the partial order R if for any two essentially stable

24 Further, in defining legality, Ehlers and Morrill (2019) restrict attention only to individually rational assignments. In the example we construct below
to show the distinction between the two concepts, all assignments will be individually rational, and so to avoid introducing unnecessary notation we omit
this requirement from the formal definition.

25 since v must Pareto dominate 4, iy must get A (because i3 is assigned B). Then, since A and B are taken, v(iz) = C, which further implies that
v(ig) = D. The only school left is E, and so v(is) = E.

26 For each student i1, i2, i3, and i4, the schools weakly preferred to her DA assignment are some subset of {A, B, C}. Since there are only 3 seats at these
schools and 4 students, some student must be assigned to a school worse than her DA assignment.
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matchings pq and w,, there exists a greatest lower bound (also called infimum or meet) i such that (i) & is an essentially
stable matching, (ii) u1 R and pa R, and (iii) for any essentially stable matching p: u1Ru and waRpy imply @wRu.

Proposition 6. The set of essentially stable matchings may not form a meet-semilattice with respect to the partial order R.
Proof. The proof is by counterexample, which we present below.

Example 3. Let there be 7 students, S = {i1, i2,i3, 14, is5, g, 17}, and 7 schools with capacity 1, C ={A,B,C, D, E, F, G}. The
priorities and preferences are given in the following tables.

>A|>B|>C|>D|>E|>F|>C Py, | Py, | Pi | Pi, | Pis | Pig | Py
iz | i1 iz ig | ig | i5 | i3 A B C D E F G
is | ip | i3 i3 is | ig | i7 D C A E A|D| A
i3 ig B D F
i] 11
G
The following matchings are essentially stable?’:
(A B CDETFSG (A B CDETFSG
Mi=\is i1 iz ia is ig iy H2=\is iy i3 iy ia is i
(A B CDETFSG (A B CDETFG
H3=\is in iy i3 ia ds i Pa=\is ih iy is ia is i

It is easy to verify that @1 and g3 are stable. At w3, the only claim is i4’s claim to D. The reassignment chain initiated by
that claim is

ig—>D—ii—>B—iy—>C—i3— D—ig;
therefore the claim is vacuous and p; is essentially stable. At w4, the only claim is's claim to A. The reassignment chain
initiated by that claim is

is—>A—>i3—>GC—i7—> A—is;

therefore the claim is vacuous and 4 is essentially stable.

It is easy to verify that neither one of p; and p, Pareto dominates the other and that the same holds for w3 and p4;
however, (1 and po both Pareto dominate s as well as p4. To conclude the proof, suppose towards a contradiction that
the set of essentially stable matchings forms a meet-semilattice with respect to the partial order R. Then, w1 and u, have
a greatest lower bound . By definition, w1 R, 2 RIL, PR3, and R L,; therefore

A= p1(i3)Ri; L (i3)Ri;pea(is) = A and A = pwa(is)Ris 1 (is) Ri; i3 (is) = A.

It follows that (i3) = ft(is) = A, a contradiction since each school has capacity 1. O

Appendix E. Alternative definitions of essential stability

In this appendix, we consider two alternative definitions of essential stability and show that both are equivalent to our
original definition.

E.1. Long-chain essential stability

We have defined reassignment chains to end as soon as the initial claimant is removed from the school she claimed. One
possible concern is that this student could still have a claim to a school she prefers to her original match. We propose an
alternative definition such that reassignment chains only end when a student is matched to a school that has an free seat
(or takes her outside option). We show that essential stability is not affected as a result.

27 There are also a student-optimal (essentially) stable matching that assigns each student to her favorite school and a student-pessimal (essentially)

stable matching that assigns to each school the student with the top priority.
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Definition 3. Consider a matching 4 and a claim (i, ¢). The long reassignment chain I initiated by claim (i, ¢) is the list

:0 0 1 1

iP—>c =i =>Cc =
where,
o =i, u%=p, ® =c and, for each k> 1,
.k . _ . . . k71 k*l .
e i€ S is the lowest-priority student in p*~"(c*~') according to > -1,
o uk is defined as: p*(*y =@, uk 1) =c*1, and pk(j) = p*-1(j) for all je S\ (i1, ik},
e c¥ € C is i*’s most preferred school to which she has a claim at p* if such a school exists; otherwise, ct = @. If

|* ()| < g, the chain terminates.

There is one difference between Definitions 1 and 3. The reassignment chain (Definition 1) initiated by the claim (i, c)
ends as soon c rejects i. In contrast, if ¢ rejects i in the long reassignment chain (Definition 3) initiated by the claim (i, ¢),
then the chain continues and i is matched to her most preferred school among those to which she has a claim. The long
chain only ends when a student is matched to a school that is not filled to capacity, at which point i may still be matched to
a school she prefers to p.(i). In that case, while i has been rejected by c, her claiming ¢ has still proved valuable so one may
dispute the vacuity of the claim (i, c). We say that i's claim to ¢ at p is long-chain vacuous if the long reassignment chain
it initiates ends at some step K with i matched to w(i), ie., i =i and cX = pu(i). Matching p is long-chain essentially
stable if all claims at p are long-chain vacuous.

Proposition 7. A matching is long-chain essentially stable if and only if it is essentially stable.

E.2. Robust-chain essential stability
Another possible concern with our definition is that some of the claims that are satisfied alongside a reassignment chain

may be vacuous. If we argue that vacuous claims are not as serious as non-vacuous one, then perhaps they should be
discarded when constructing reassignment chains. We show, however, that this does not affect our results.

Definition 4. Consider a matching p and a claim (i, ¢). The robust reassignment chain I' initiated by claim (i, ¢) is the list

L N LN N
where,
e =i, u% =y, c®=c and, for each k> 1,
e i* € S is the lowest-priority student in u*~'(c*"!) according to > -1,
e uk is defined as: p*@*) =@, u*(* 1) =c*"1, and pk() = p*1(j) for all je S\ (i*1, i},
e if i* =1, the chain terminates,
e if i 1, then c* € C is i*'s most preferred school to which she has a non-vacuous claim at u* if such a school exists;

otherwise, c* = @. If |*(c*)| < g, the chain terminates.

A robust reassignment chain is identical to a reassignment chain except for one difference: at any step k, student i¥ is
matched to the school she prefers among those to which she has a non-vacuous claim. We say that claim (i, ¢) at matching
i is robust-chain vacuous if i =i in the reassignment chain initiated by (i,c) at x that terminates at step K. Matching
1 is robust-chain essentially stable if all claims at w are robust-chain vacuous. As our next result shows, essential stability
is unaffected by this alternative definition.

Proposition 8. A matching is robust-chain essentially stable if and only if it is essentially stable.
E.3. Proofs

Proof of Proposition 7. Our definitions directly imply that all long-chain vacuous claims are vacuous; therefore, all long-
chain essentially stable matchings are essentially stable. To show the converse, consider an essentially stable matching w
and a (vacuous) claim (i, c¢) at ; we need to show that (i, ¢) is long-chain vacuous at u.

Denote by I'; the reassignment chain initiated by (i, ¢) at u and by @, = u,rl the final matching obtained after, starting
from w, I'1 is carried out. Let cq, ¢, ..., cy be a sequence of schools, I'z, ..., 'y be a sequence of reassignment chains, and
M2, ..., Uy be a sequence of matchings such that ¢; =c¢ and, for eachn=2,...,N,

e ¢, is i’s most preferred school to which she has a claim at w,—1,
e I'; is the reassignment chain initiated by (i, ¢;) at pp—1,
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® = p,rl:"_l is the final matching obtained after, starting from p,_1, I'y is carried out,
e and i does not have any claim at fy.

For every n=1,..., N, ly is essentially stable by Lemma 3, which means that ', ends at some step K, where i is removed
from c,. Lemmas 1 and 2 imply that i has strictly fewer claims at the end of each reassignment chain; therefore N is finite,
i.e., a matching in which i does not have any claim is reached after a finite number of reassignment chains are carried out.
For every n=1,..., N, it will prove useful to define K;) = E”m=l K to be the sum of the steps of the first n reassignment
chains.

Let

i=j'sc=d">jl5d' > ... » jl >4t

be the long reassignment chain initiated by (i,c) at p, which we denote by A. Analogously to Definition 3, for every
£=0,1,...,L, let v* be the matching obtained at step £ of A. We need to show that j* =i and d* = u(i).
Our argument proceeds by induction to prove the following statement:

Foralln=1,...,N, jX® =i and vK® (j) = u,(j) for all je S\ {i}.

We begin by showing that our statement is satisfied for n = 1. By definition, I'1 and A are identical up to step K1) = K1
where i is removed from c; therefore, jX0 =i and vKo (j) = pq(j) for all j e S\ {i}.

We next suppose that our statement is satisfied for some n=1,..., N—1 (induction hypothesis) and show that it is then
also satisfied for n+ 1. Observe first that p(i)R;®, as otherwise, because | (#)| < |S| < gy, i has a non-vacuous claim to ¥
at ., which contradicts the assumption that w is essentially stable. By definition, cp4+1 is i's most preferred school to which
she has a claim at pu,, which directly implies that ¢, P;t(i), hence ¢, P;#. By the induction hypothesis, vKm (i) =@ and
vEm (j) = pn(j) for all je S\ {i} so c;o1 is also i's most preferred school to which she has a claim at vKm, which by
definition means that d¥m = Cn+1. Then, vKm+1 s identical to the matching obtained after the first step of I';41, where
the lowest-priority student in wX® (d¥®) is removed from dXm. Therefore, the next K, steps of A are identical to the
Kni1 steps of Tniq. As Tnyq ends when i is removed from cpy1, jXo+0 =i and vEo+1(j) = puiq () for all j e S\ {i}, which
concludes our inductive argument.

Through our inductive argument, we have established that jX®» =i and v¥® (j) = uy(j) for all j € §\ {i}. By construc-
tion, i is removed from (i) in the first step of A so [v!(u(i)| < qu)- No student moves to wu(i) in any step £ < Ky
as this would end A; therefore [vX® (u(i))| < Quy- As p(i)R;@, it follows that either (i) =@, or w(i)Pi@ in which case
vEm (i) =@ and |vE® ((i))| < g,y imply that i has a claim to u(i) at vK®, Then, by definition, d¥® R;u (i) as, otherwise,
i would be matched to (i) (or a more preferred school) rather than d¥w . If d¥w p;p(i), then i has a claim to d¥m at
vE™ | As (i) = (i) and vE® (j) = () for all j e S\ {i}, it follows that i has a claim to d¥® at gy, which contradicts
the assumption that i does not have any claim at @y. We conclude that dkm = ().

We have established that jX® =i, d¥o0 = (i), and [v¥® (u(i))| < quq); therefore, at step Ky of A, i moves to u(i)
and the chain ends. We conclude that Ky = L; hence jL =i and dl = u(i). O

Proof of Proposition 8. Consider a matching p and a claim (i, ¢) at p. Let

-0

i=i% 5 c=c"—1i

...

be the reassignment chain initiated by (i, c) at w, which we denote by I' and let K be the number of steps after which T’
ends. Analogously to Definition 1, for every k=0, 1,...,K, let ,u" be the matching obtained at step k of I'. We denote by
yf the final matching obtained after, starting from g, I' has been carried out. Similarly, let

i=j0—>c=d0—>jl—>d1—>---

be the robust reassignment chain initiated by (i, c) at w, which we denote by A and let L be the number of steps after
which A ends. Analogously to Definition 4, for every £=0,1,...,L, let v be the matching obtained at step £ of A. We
denote by u® the final matching obtained after, starting from &, A has been carried out.

For every school e € C, we define ¢! (e) as follows. If |l (e)| < ge, then ¢! (e) = ul'(e). If ! (e)| = ge, then ¢ (e) =
ule)Uthes: ul(e) = h}). In words, ¢"(e) contains all those students who are either matched to e at u” or such that
e is filled to capacity with higher-priority students. Throughout the proof, we make use of the following lemma, which is
proved separately.

Lemma 6. Forall £ =1, ..., L, if u"(j*)P ;@ and v(e) < ¢" (e) for all e € C, then j* has a non-vacuous claim to " (j*) at v*.
We proceed with an inductive argument to prove the following statement:

For all £=1,...,L and for every school e € C, vi(e) C ¢’ (e).
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We begin by showing that our statement is satisfied for £ = 1. By an analogous reasoning to the one developed in the
proof of Lemma 1, it is sufficient to show that i € ¢T(c). If (i,c) is vacuous at u, then i is removed from c in step K of
I so |ul(c)| =qc and uf(c) >¢ i, which by definition implies that i € ¢'(c). If (i,c) is not vacuous, then by definition
ieu(©) e ©).

We next suppose that our statement is satisfied for some £ =1,...,L — 1 (induction hypothesis) and show that it is
then also satisfied for £ + 1. Again by a reasoning analogous to the one developed in the proof of Lemma 1, it is sufficient
to show that j¢ € T (d%). Suppose towards a contradiction that u”(j%)P d*. By definition, d‘R ;@ so u! (j*)P ;@ which,
combined with our induction hypothesis, means that Lemma 6 applies. It follows that j¢ has a non-vacuous claim to ,uF( iH
at v¢, a contradiction since j¢ would then be matched to ul(j¢) (or a more preferred school) rather than df. We conclude
that d“R ¢ ;1" (j%). The remainder of the argument to show that d*R " (j*) implies j* € ¢"(d") is once again analogous to
the one developed in Lemma 1.

We have established through our inductive argument that vE(e) C ¢F (e) for every e € C. The last part of the proof makes
use of that result to prove the equivalence between essential stability and robust-chain essential stability.

(RCES = ES) Suppose towards a contradiction that (i, ¢) is robust-chain vacuous but not vacuous at w@. On the one hand,
(i,c) is robust-chain vacuous; therefore i is removed from c at step L of A, which means that vt (c) contains g. students
who have a higher priority than i. As vi(c) € ¢''(c), it follows that ¢ (c) contains at least g students who have a higher
priority than i. On the other hand, (i, ) is not vacuous so i € u%'(c). As |uf (u(j)| < q,.(jty and, by definition, the students
in 1" (1)) have the highest priorities among the students in ¢ (1 (j)), it follows that ¢ (c) contains at most q. — 1
students who have a higher priority than i, a contradiction.

(ES = RCES) Suppose towards a contradiction that (i, c) is vacuous but not robust-chain vacuous at p. Then, I' ends
when i =i¥ is removed from ¢ =cX~! and A ends when some student j' =i is matched to some school d* such that
|t (dh)| < qq, - By construction, |u!(dh)| < gy, implies that either db = (i) or |(dh)| < gq. In both cases, |!(@h)] < qq;
hence, for all k=0,...,K —1, ck # dl as otherwise I" would end before i is removed from c. A direct consequence is that
|k dh)) <qq forallk=1,...,K.

By definition, jl is removed from w(jl) at some step of A. At that point, @ (j!) is filled to capacity with students who
all have a higher priority than j'. As schools get higher-priority students throughout a (robust) reassignment chain, this is
still the case at step L; therefore |[vi(u(jh)| = gq,;t) and vE(u(jb) = ;1) j5. As @ is never filled to capacity, u(j’) # @
so our inductive argument applies and yields vE(u(j4)) € ¢" (1 (j1)). Therefore, ¢" (11(j")) contains at least g, i, students
who have a higher priority than jt. As |u" (1 (j")| < g,ji) and, by definition, the students in u" (u(j*)) have the highest
priorities among the students in ¢ (i£(j1)), it follows that all of the students in " (1£(j5)) have a higher priority than jL.
Therefore, jL ¢ pul(u(j1)) or, equivalently, p(jb) # u" ().

On the one hand, p(jt) # ul'(j*) implies that jl is matched to u'(jl) at some step k of T, ie. there exists k =
1,...,K —1 such that i* = j* and ¢* = u'(j1). Recall that ¥ #d" and |u¥ (d)| < gy for all K =1,...,K —1; therefore,
d" £ u"(Y) and |u*(d)| < qu. By definition, it follows that u"(jh)P;idh, as otherwise j* would be matched to d" (or a
more preferred school) rather than u"(j%). On the other hand, u"(j*)P ¥ as otherwise j- would not be matched to u!" in
step k of . Moreover, our inductive argument implies that v.(e) € ¢ (e) for all e € C. Therefore, Lemma 6 applies and j'
has a non-vacuous claim to u'(j) at vt. By definition, it follows that d'R ;. " (j!), as otherwise j' would be matched to

u"(j*) (or a more preferred school) rather than d*. We conclude that " (j)P;d"R ;" (j*), a contradiction. O

Proof of Lemma 6. As [u" (" (j4))| < g,rjty and, by definition, the students in " (u(j%)) have the highest priorities
among the students in ¢" (1" (%)), ¢ (" (j*)) contains at most g, ;+, — 1 students who have a higher priority than j.
By assumption, p" (j*)P ;@ =vi(j%) and v¢(u"(j%) € ¢" (1" (j*)); therefore j* has a claim to u'(j*) at v*. It remains to
show that this claim is not vacuous.

Denote by © the reassignment chain initiated by (j¢, uT(j9) at vf and let M be the number of steps after which ®
ends. Analogously to Definition 1, for every m=0,1,..., M, let p™ be the matching obtained at step m of ®. By assumption,
p? = vt c ¢l (e) for all e € C. Then, an analogous inductive argument to the one developed in the proof of Lemma 1 implies
the following statement:

For allm=1,..., M and for every school e € C, p™(e) C ¢' (e).

A direct consequence is that pM (" (j%)) € ¢" (u"(j*)); therefore p™(u" (j)) contains at most g,,r ;e — 1 students who

have a higher priority than j¢ (as we have shown above that ¢' (1! (j%)) does). Suppose towards a contradiction that j¢'s
claim to uT(j%) at v¥ is vacuous. Then, by construction, j¢ is removed from ' (j¢) in step M of ®. Therefore, o™ (' (%))
contains q,,rje, students who have a higher priority than j¢, a contradiction. O

References

Abdulkadiroglu, A., Pathak, PA., Roth, A.E., 2009. Strategy-proofness versus efficiency in matching with indifferences: redesigning the NYC high school
match. Am. Econ. Rev. 99, 1954-1978.



390 P. Troyan et al. / Games and Economic Behavior 120 (2020) 370-390

Abdulkadiroglu, A., Sonmez, T., 1999. House allocation with existing tenants. ]. Econ. Theory 88, 233-260.

Abdulkadiroglu, A., Sénmez, T., 2003. School choice: a mechanism design approach. Am. Econ. Rev. 93, 729-747.

Alcalde, J., Romero-Medina, A., 2017. Fair School Placement. Theory Decis. 83 (2), 293-307.

Alva, S., Manjunath, V., 2019a. Stable-dominating Rules. Working paper. University of Ottawa.

Alva, S., Manjunath, V., 2019b. Strategy-proof Pareto-improvement. J. Econ. Theory 181, 121-142.

Balinski, M., Sonmez, T., 1999. A tale of two mechanisms: student placement. ]. Econ. Theory 84, 73-94.

Cantala, D., Papai, S., 2014. Reasonably and Securely Stable Matching. Tech. Rep., Mimeo.

Chen, Y., Sénmez, T, 2002. Improving efficiency of on-campus housing: an experimental study. Am. Econ. Rev. 92, 1669-1686.

Dubins, L.E.,, Freedman, D.A., 1981. Machiavelli and the Gale-Shapley algorithm. Am. Math. Mon. 88, 485-494,

Dur, U, Gitmez, A., Yilmaz, O., 2019. School choice under partial fairness. Theor. Econ. 14, 1309-1346.

Dutta, B., Vohra, R, 2017. Rational expectations and farsighted stability. Theor. Econ. 12, 1191-1227.

Ehlers, L., 2007. Von Neumann-Morgenstern stable sets in matching problems. J. Econ. Theory 134, 537-547.

Ehlers, L., Morrill, T., 2019. (Il)legal assignments in school choice. Rev. Econ. Stud. Forthcoming.

Gale, D., Shapley, LS., 1962. College admissions and the stability of marriage. Am. Math. Mon. 69, 9-15.

Harsanyi, ].C., 1974. An equilibrium-point interpretation of stable sets and a proposed alternative definition. Manag. Sci. 20, 1472-1495.
Herings, PJ.-]., Mauleon, A., Vannetelbosch, V., 2009. Farsightedly stable networks. Games Econ. Behav. 67, 526-541.

Hirata, D., Kasuya, Y., Tomoeda, K., 2019. Stability against Robust Deviations in the Roommate Problem. Working paper.

Irving, RW.,, 1985. An efficient algorithm for the “stable roommates” problem. J. Algorithms 6, 577-595.

Irving, R.W,, Leather, P., 1986. The complexity of counting stable marriages. SIAM ]. Comput. 15, 655-667.

Kesten, 0., 2004. Student placement to public schools in the US: two new solutions. University of Rochester. Unpublished mimeo.
Kesten, 0., 2010. School choice with consent. Q. ]. Econ. 125, 1297-1348.

Kojima, F., Manea, M., 2010. Axioms for deferred acceptance. Econometrica 78, 633-653.

Li, S., 2017. Obviously strategy-proof mechanisms. Am. Econ. Rev. 107, 3257-3287.

McVitie, D.G., Wilson, LB., 1971. The stable marriage problem. Commun. ACM 14, 486-490.

Morrill, T., 2015. Making just school assignments. Games Econ. Behav. 92, 18-27.

Morrill, T., 2016. Which School Assignments Are Legal? Working paper. North Carolina State University.

Page Jr,, EH., Wooders, M.H., Kamat, S., 2005. Networks and farsighted stability. ]. Econ. Theory 120, 257-269.

Ray, D., Vohra, R., 2015. The farsighted stable set. Econometrica 83, 977-1011.

Roth, A.E., 1985. The college admissions problem is not equivalent to the marriage problem. ]. Econ. Theory 36, 277-288.

Roth, AE., 1986. On the allocation of residents to rural hospitals: a general property of two-sided matching markets. Econometrica 54, 425-427.
Shapley, L.S., Scarf, H.E., 1974. On cores and indivisibility. ]. Math. Econ. 1, 23-28.

Sonmez, T., 2013. Bidding for army career specialties: improving the ROTC branching mechanism. J. Polit. Econ. 121, 186-219.

Tang, Q., Yu, ]., 2014. A new perspective on Kesten's school choice with consent idea. ]. Econ. Theory 154, 543-561.

Tang, Q., Zhang, Y., 2016. Weak Stability and Pareto Efficiency in School Choice. Working paper. Shanghai University of Finance and Economics.
Troyan, P, Morrill, T., 2020. Obvious manipulations. J. Econ. Theory 185.

Von Neumann, J., Morgenstern, O., 1944. Theory of Games and Economic Behavior. Princeton University Press.

Wako, J., 2010. A polynomial-time algorithm to find von Neumann-Morgenstern stable matchings in marriage games. Algorithmica 58, 188-220.



