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Abstract

We study extensive-form games and mechanisms allowing agents that plan for only
a subset of future decisions they may be called to make (the planning horizon). Agents
may update their so-called strategic plan as the game progresses and new decision
points enter their planning horizon. We introduce a family of simplicity standards
which require that the prescribed action leads to unambiguously better outcomes, no
matter what happens outside the planning horizon. We employ these standards to
explore the trade-off between simplicity and other objectives, to characterize simple
mechanisms in a wide range of economic environments, and to delineate the simplicity
of common mechanisms such as posted prices and ascending auctions, with the former
being simpler than the latter.
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1 Introduction

Consider a group of agents who must come together to make a choice from some set of
potential outcomes that will affect each of them. This can be modeled as an extensive-form
game, with the final outcome determined by the decisions made by the agents during the
game. To ensure that the final outcome satisfies desirable normative properties (e.g., effi-
ciency or revenue maximization), the standard approach in mechanism design is to provide
agents with incentives to play in a predictable and desirable way. For instance, the designer
may use a Bayesian or dominant-strategy incentive-compatible direct mechanism where it
is in each agent’s best interest to simply report all of their private information truthfully.
This approach succeeds so long as the participants understand that being truthful is in their
interest (for instance, if the designer has the ability to successfully teach the agents how
to play). However, there is accumulating empirical evidence of agents not reporting the
truth in such mechanisms.1 Bayesian or dominant-strategy mechanisms are thus sometimes
not sufficiently simple for participants to play as expected. Using simpler mechanisms can
reduce such strategic confusion. It may also lower participation costs, attract participants,
and equalize opportunities across participants with different levels of access to information
and strategic sophistication. Additionally, designing simpler mechanisms requires less infor-
mation about participants’ beliefs.2

What mechanisms, then, are actually simple to play? We address this question by intro-
ducing a general class of simplicity standards for games and mechanism design. We use these
standards to assess the restrictions that simplicity imposes on the mechanism designer and
to characterize simple mechanisms for a broad range of social choice environments with and
without transfers.3 Analogously to the revelation principle for Bayesian mechanism design,
we construct classes of mechanisms that limit the space over which a designer interested
in implementing a simple mechanism must search.4 As applications, we provide simplicity-
based microfoundations for popular mechanisms such as posted prices, priority mechanisms,
and ascending auctions.

1See, e.g., Kagel, Harstad, and Levin (1987), Li (2017b), Hassidim, Romm, and Shorrer (2016), Rees-Jones
(2017), Rees-Jones (2018), Shorrer and Sóvágó (2018), and Artemov, Che, and He (2017).

2See Vickrey (1961) for participation costs, Spenner and Freeman (2012) for attracting participants,
Pathak and Sönmez (2008) for leveling the playing field, and Wilson (1987) and Bergemann and Morris
(2005) for a designer’s informational requirements.

3Examples include auctions (Vickrey, 1961; Riley and Samuelson, 1981; Myerson, 1981), voting (Arrow,
1963), school choice (Abdulkadiroğlu and Sönmez, 2003), organ exchange (Roth, Sönmez, and Ünver, 2004),
course allocation (Sönmez and Ünver, 2010; Budish and Cantillon, 2012), and refugee resettlement (Jones
and Teytelboym, 2016; Delacrétaz et al., 2016).

4Direct mechanisms are not necessarily simple, and hence the revelation principle does not extend to
simple extensive form games, cf. Li (2017b).
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The main innovation in our approach is a departure from the standard assumption that
agents have unlimited foresight and are able to plan a complete strategy for every possible
future contingency. Rather, we allow for agents with limited foresight who, each time they are
called to play, make plans for only a subset of possible future moves, their current planning
horizon. We refer to these plans as partial strategic plans.5 A partial strategic plan is simply
dominant if the called-for action is weakly better than any alternative, irrespective of what
happens at decision points not planned for. As the game progresses, agents may update
their strategic plans, and choose an action that is different from what they planned in the
past. This potential for updating is what differentiates strategic plans from the standard
game-theoretic concept of a strategy.6

We model variations in simplicity and required foresight ability by varying agents’ plan-
ning horizons. This gives rise to a family of simple dominance standards. The stronger the
simplicity standard—i.e., the fewer information sets in the current planning horizon—the
more robust the corresponding mechanisms is to agents who can plan for only limited future
horizons.7 We show that the longer the planning horizon of the agents, the more social choice
rules a designer can implement in a simply-dominant way. Furthermore, any implementable
social rule can be implemented via a perfect-information extensive-form game.

We focus on special cases of simple dominance in which agents are able to plan some
exogenously given number k ∈ {0,1, ...,∞} of future moves and analyze three such special
cases of simple dominance in detail.

• k =∞: each agent’s planning horizon consists of all information sets at which this agent
moves (and contains no other information sets); in other words, at each information
set, an agent can plan the actions they will take at any future information set at
which they may be called to play. In this case, simple dominance becomes equivalent
to Li’s (2017b) obvious dominance, and so we refer to the resulting simply dominant
strategic plans as obviously dominant, and the corresponding mechanisms as obviously
strategy-proof (OSP).

• k = 1: each agent’s planning horizon consists of their current information set and only
5Savage (1954) wrestles with whether decision-makers should be modeled as “look before you leap” (create

a complete contingent plan for all possible future decisions one may face) or “you can cross that bridge when
you come to it” (make choices as they arise). While standard strategic concepts of game theory formalize
the former modeling option, our approach formalizes the latter.

6We are agnostic as to whether the agents are sophisticated and understand that their plans might be
updated, or whether the agents are naive about this possibility. The future actions in the partial strategic
plan merely ensure the optimality of the initial action.

7We show that a strategic plan is simply dominant if and only if in every game an agent may confuse
with the actual game being played, the strategic plan is weakly dominant in the standard sense (Theorem
3). Li (2017b) provides a related behavioral microfoundation for his obvious dominance, on which we build.
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the first information sets at which they may be called to play in the continuation
game; in other words, agents are able to plan at most one move ahead at a time. We
refer to the resulting simply dominant strategic plans as one-step dominant, and the
corresponding mechanisms as one-step simple (OSS).

• k = 0: each agent’s planning horizon consists only of their current information set; in
other words, agents cannot plan for any moves in the future. We refer to the resulting
resulting simply dominant strategic plans as strongly obviously dominant, and the
corresponding mechanisms as strongly obviously strategy-proof (SOSP).

The above standards are nested: strongly obviously dominant strategic plans are one-step
dominant, which in turn are obviously dominant. Obvious dominance is the most permissive
of these standards. It relies on the assumption that agents can create a complete plan for all
possible contingencies going forward, and further are able to perform backwards induction
over at least their own future actions (though not over the actions of their opponents). For
instance, consider the game of chess: assuming that White can always force a win, any
winning strategy of White is obviously dominant; yet, the strategic choices in chess are far
from obvious. Winning strategies in chess require looking many steps into the future, and
thus are not one-step dominant dominant nor strongly obviously dominant. Games that
admit one-step and/or strongly obviously dominant strategies do not require agents to have
such lengthy foresight.

For the above three simplicity standards we ask: which mechanisms are simple? For
obvious dominance, we focus on social choice environments without transfers, hence comple-
menting Li (2017b), who focuses on the case with transfers. We show that OSP games can be
represented as millipede games. In a millipede game, each time an agent is called to move,
she is presented with some subset of payoff-equivalent outcomes, or more simply payoffs,
that she can ‘clinch’. Clinching corresponds to receiving a payoff for sure, and leaving the
game. The agent may also be given the opportunity to ‘pass’. If the agent passes, she re-
mains in the game, with the potential of being offered better clinching options in the future.
Agents are sequentially presented with such clinch-or-pass choices until all agents’ payoffs
are determined. The millipede class includes as special cases some familiar, and intuitively
simple, games, such as serial dictatorships. However, the millipede class also admits other
games that are rarely observed in market-design practice, and whose strategy-proofness is
not necessarily immediately clear. In particular, similar to chess, some millipede games re-
quire agents to look far into the future and to perform potentially complicated backward
induction reasoning (see Figure 2 in Section 4.2 for an example).

We next study one-step dominance in environments both with and without transfers. We
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show that in the binary allocation environments with transfers studied by Li (2017b)—which
encompass canonical special cases such as single-unit auctions and binary public good choice—any
one-step simple mechanism is equivalent to a personal clock auction. This strengthens Li’s
result that OSP mechanisms are equivalent to personal clock auctions. In particular, any so-
cial choice rule that is implementable in obviously dominant strategies is also implementable
in one-step dominant strategic plans. In no-transfer environments, one-step simplicity elim-
inates the complex OSP millipede games discussed above (and also eliminates games such
as chess). Indeed, we characterize OSS millipede games as those that satisfy a property we
call monotonicity. Monotonicity ensures that, at the first time an agent may be called to
play again in the continuation game that begins following any of her current actions, the
agent’s best clinching option will be weakly better than anything she could have clinched in
the past. Monotonic games seem particularly simple, since the agent only needs to recognize
that she can do no worse at her very next move if she remains in the game.8

For strong obvious dominance, we show that SOSP games do not require agents to look
far into the future and perform lengthy backwards induction: in all such games, each agent
has essentially at most one payoff-relevant move. Strongly obviously dominant strategic
plans are incentive-compatible even for agents concerned about trembles, or who have time-
inconsistent preferences. Building on this insight, we show that all SOSP mechanisms can
be implemented as sequential choice mechanisms in which each agent moves at most once,
and, at this move, is offered a choice from a menu of options. If the menu has three or
more options, then the agent’s final payoff is what they choose from the menu. If the menu
has only two options, then the agent’s final payoff might depend on other agents’ choices,
but truthfully indicating the preferred option is the strongly obviously dominant choice.
The offered menu may include prices, in which case we call the mechanism a sequential
posted price mechanism. The strong obvious dominance of these mechanisms provides an
explanation of the popularity of posted prices, a ubiquitous sales procedure.9

Our construction of simplicity criteria is inspired by Li (2017b), who formalized obvious
strategy-proofness and established its desirability as an incentive property. We go beyond
his work in two ways. First, we introduce gradated standards of simplicity, which allow
us to assess the trade-off between simplicity and implementation flexibility. Second, we

8Monotonicity is a generalization of a similar feature of ascending auctions: in an ascending auction, if
an agent passes (continues in the auction), at any next move, she is able to drop out (clinch the zero payoff),
except if she wins. Since the zero payoff is the only clinchable payoff and this payoff is always clinchable
(except if the agent wins), ascending auctions are monotonic. Such monotonicity is also satisfied by Li’s
personal clock auctions.

9For earlier microfoundations of posted prices, see Hagerty and Rogerson (1987) and Copic and Ponsati
(2016).
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provide simplicity-based microfoundations for popular mechanisms such as posted prices
and priority mechanisms. Following up on Li’s work, but preceding ours, Ashlagi and
Gonczarowski (2018) show that stable mechanisms such as Deferred Acceptance (DA) are
not obviously strategy-proof, except in very restrictive environments where DA simplifies to
an obviously strategy-proof game with a ‘clinch or pass’ structure similar to simple millipede
games (though they do not describe it in these terms). Other related papers include Troyan
(2019), who studies obviously strategy-proof allocation via the popular Top Trading Cycles
(TTC) mechanisms, and provides a characterization of the priority structures under which
TTC are OSP-implementable.10 Following our work, Arribillaga et al. (2020) and Arribillaga
et al. (2019) characterize the voting rules that are obviously strategy-proof on domains of
single-peaked preferences. Bade and Gonczarowski (2017) study obviously strategy-proof
and efficient social choice rules in several environments. Mackenzie (2020) introduces the
notion of a “round table mechanism” for OSP implementation and draws parallels with the
standard Myerson-Riley revelation principle for direct mechanisms. There has been less work
that goes beyond Li’s obvious dominance. Li (2017a) extends his ideas to an ex post equilib-
rium context, while Zhang and Levin (2017a; 2017b) provide decision-theoretic foundations
for obvious dominance and explore weaker incentive concepts.11

Our work also contributes to the understanding of limited foresight and limits on back-
ward induction. Other work in this area, with different approaches from ours, includes Jehiel
(1995; 2001) on limited foresight equilibrium in which players’ forecasts are correct, Gabaix
et al. (2006) on directed cognition, and Ke’s (2019) axiomatization of bounded-horizon back-
ward induction. A major difficulty for models of imperfect foresight is how an agent takes
into account a future they are unable to foresee; we resolve this difficulty by designing games
in which all resolutions of the unforeseen lead the agent to the same current decision.12 As
a by-product, our mechanisms work well when agents are inter-temporally inconsistent, for
instance because they face Knightian uncertainty or optimize against multiple priors (as,
e.g., in Knight (1921) and Bewley (1987)) or have time-inconsistent preferences (as, e.g., in

10Li showed that the classic TTC mechanism of Shapley and Scarf (1974), in which each agent starts by
owning exactly one object, is not obviously strategy-proof. Following our and Troyan’s work, Mandal and Roy
(2020) characterize the priority structures under which Hierarchical Exchange of Pápai (2000) and Trading
Cycles (group strategy-proof and efficient mechanisms) of Pycia and Ünver (2017) are OSP-implementable;
cf. also Mandal and Roy (2021).

11Also of note is Glazer and Rubinstein (1996), who argued that extensive-form games may simplify the
solution of normal-form games, and Loertscher and Marx (2020), who study environments with transfers
and construct a prior-free obviously strategy-proof mechanism that becomes asymptotically optimal as the
number of buyers and sellers grows. A different strategic perspective on simplicity in mechanism design was
explored by Börgers and Li (2019).

12The issue of accounting for the unforeseen is also crucial for the analyses of incomplete contracts (e.g.,
Maskin and Tirole, 1999) and unawareness (e.g., Karni and Viero, 2013). Agents who rely on incomplete
models have been also studied in the context of persuasion (e.g., Schwartzstein and Sunderam, 2021).
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Strotz (1956) and Laibson (1997)).
Finally, this paper adds to our understanding of dominant incentives, efficiency, and fair-

ness in settings with and without transfers. In settings with transfers, these questions were
studied by e.g. Vickrey (1961), Clarke (1971), Groves (1973), Green and Laffont (1977),
Holmstrom (1979), Dasgupta et al. (1979), and Hagerty and Rogerson (1987). In settings
without transfers, in addition to Gibbard (1973, 1977) and Satterthwaite (1975) and the allo-
cation papers mentioned above, the literature on mechanisms satisfying these key objectives
includes Ehlers (2002) and Pycia and Unver (2020; 2017) who characterized efficient and
group strategy-proof mechanisms in settings with single-unit demand, and Pápai (2001) and
Hatfield (2009) who provided such characterizations for settings with multi-unit demand.13

Liu and Pycia (2011), Pycia (2011), Morrill (2015), Hakimov and Kesten (2014), Ehlers
and Morrill (2017), and Troyan et al. (2020) characterize mechanisms that satisfy incentive,
efficiency, and fairness objectives.

2 Model

2.1 Preferences

Let N = {i1, . . . , iN} be a set of agents, and X a finite set of outcomes.14 An outcome might
involve a monetary transfer. Each agent has a preference ranking over outcomes, where, for
x, y ∈ X , we write x ≿i y to denote that x is weakly preferred to y. We allow for indifferences,
and write x ∼i y if x ≿i y and y ≿i x. For any ≿i, we let ≻i denote the corresponding strict
preference relation, i.e., x ≻i y if x ≿i y but not y ≿i x. We use Pi to denote the domain of
agent i’s preferences, and refer to ≿i as agent i’s type.

We allow incomplete information through the standard imperfect-information construc-
tion of a meta-game in which Nature moves first and determines agents’ types, and only then
the designed game/mechanism is played. Due to the nature of the dominance properties we
study, we do not need to make any assumptions on agents’ beliefs about others’ types nor
on how agents’ evaluate lotteries.15

13Pycia and Ünver (2020) characterized individually strategy-proof and Arrovian efficient mechanisms.
For an analysis of these issues under additional feasibility constraints, see also Dur and Ünver (2015) and
Root and Ahn (2020).

14Assuming X is finite simplifies the exposition and is satisfied in the examples listed in the introduction.
This assumption can be relaxed. For instance, our analysis goes through with no substantive changes if we
allow infinite X endowed with a topology such that agents’ preferences are continuous in this topology and
the relevant sets of outcomes are compact.

15It is natural to assume that an agent weakly prefers lottery µ over ν whenever for all outcomes x ∈
supp (µ) and y ∈ supp (ν) this agent weakly prefers x over y. This mild assumption is satisfied for expected
utility agents, as well as for agents who prefer µ to ν as soon as µ first-order stochastically dominates ν.
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2.2 Extensive-Form Games

To determine the outcome the planner designs a game Γ for the agents to play. We consider
imperfect-information, extensive-form games with perfect recall. These are defined in the
standard way: there is a finite collection of partially ordered histories, H. We write h′ ⊆ h
to denote that h′ ∈ H is a subhistory of h ∈ H, and h′ ⊂ h when h′ ⊆ h but h ≠ h′. Terminal
histories are denoted with bars, i.e., h̄. Each h̄ ∈ H is associated with an outcome in X . At
every non-terminal history h ∈ H, one agent, denoted ih, is called to play and chooses an
action from a finite set A(h). We write h′ = (h, a) to denote the history h′ that is reached by
starting at history h and following the action a ∈ A(h). To avoid trivialities, we assume that
no agent moves twice in a row and that ∣A(h)∣ > 1 for all non-terminal h ∈ H. To capture
random mechanisms, we also allow for histories h at which a non-strategic agent, Nature,
is called to move. When Nature moves, she selects an action from A(h) according to some
known probability distribution.

The set of histories at which agent i moves is denoted Hi = {h ∈H ∶ ih = i}. We partition
Hi into information sets and denote this partition by Ii. For any information set I ∈ Ii and
h,h′ ∈ I and any subhistories h̃ ⊆ h and h̃′ ⊆ h′ at which i moves, at least one of the following
two symmetric conditions obtains: either (i) there is a history h̃∗ ⊆ h̃ such that h̃∗ and h̃′ are
in the same information set, A(h̃∗) = A(h̃′), and i makes the same move at h̃∗ and h̃′, or (ii)
there is a history h̃∗ ⊆ h̃′ such that h̃∗ and h̃ are in the same information set, A(h̃∗) = A(h̃),
and i makes the same move at h̃∗ and h̃. We denote by I(h) ∈ Ii the information set
containing history h. We say that an information set I1 precedes information set I2 if there
are h1 ∈ I1 and h2 ∈ I2 such that h1 ⊆ h2. If I1 precedes I2, we write I1 ≤ I2 (and I1 < I2

if I1 ≠ I2); we then also say that I2 follows I1 and that I2 is a continuation of I1. An
outcome x is possible at information set I if there is h ∈ I and a terminal history h̄ ⊇ h
such that x obtains at h̄.

3 Simple Dominance

What extensive-form games are simple to play? Intuitively, choosing from a menu of out-
comes—e.g., a take-it-or-leave-it opportunity to buy an object at a posted price, or a choice
from a set of objects in an extensive-form serial dictatorship (cf. Section 4.3)—entails simpler
strategic considerations than those faced by a bidder in an ascending clock auction. Simi-
larly, ascending clock auctions are simpler than complex games such as chess. We propose a

While our results do not rely on this assumption, it ensures that dominant actions always lead to weakly
preferred lotteries over outcomes.
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class of simplicity standards that allows us to differentiate the strategic simplicity of these
and other games.

In defining our class of simplicity standards, we relax the standard assumption of eco-
nomic analysis that players can analyze and plan their actions arbitrarily far into the future.
Such unlimited foresight assumptions are embedded in standard game theoretic concepts
of backward induction, dynamic programming, perfect Bayesian equilibrium, iterated domi-
nance, weak dominance, and Li’s obvious dominance. In relaxing the foresight assumption,
we build on the pioneering approach of Li (2017b), whose obvious dominance allows for
agents who do not reason carefully about what their opponents will do, while still requir-
ing that they search deep into the game with regard to their future self. Li’s agents know
the structure of precedence among the information sets at which they move and the sets
of outcomes that could possibly obtain conditional on any sequence of their own actions
(though not conditional on their opponents’ actions). For instance, if White has a winning
strategy in chess—i.e., at the start of the game, White knows what to do at any possible
future configuration of the board to ensure a victory—then this strategy is also obviously
dominant. We relax Li’s foresight assumptions, only maintaining that players know possible
outcomes of actions and precedence relations for information sets in their planning horizon
(i.e., those information sets for which the agent plans).

The key innovation in our framework is that an agent may update their plan as the game
is played. In other words, we allow the agent’s perception of the strategic situation, and
hence, their planned actions to vary as the game progresses. To differentiate them from the
standard game-theoretic notion of a “strategy” as a complete contingent plan of action, we
refer to these objects as “strategic plans”, introduced in the next subsection.

3.1 Strategic plans

Formally, each information set I∗ ∈ Ii at which agent i moves has an associated set of
continuation information sets Ii,I∗ ⊆ {I ∈ Ii∣I ≥ I∗} that are simple from the perspective
of I∗; we call Ii,I∗ agent i’s planning horizon at I∗. We assume that I∗ ∈ Ii,I∗ , but
otherwise, the only restriction is that Ii,I∗ ⊆ Ii.16 A (partial) strategic plan Si,I∗ (≻i) for
agent i of type ≻i at information set I∗ maps each simple information set I ∈ Ii,I∗ to an

16The assumption that Ii,I∗ ⊆ Ii is what makes our simplicity standards dominance standards. Dropping
this assumption and endowing players with beliefs of what other players do at simple information sets leads
to an analogue of our theory for equilibria. A natural requirement on the collection of simple node sets is
that if an agent classifies an information set I > I1 as simple from the perspective of information set I1 then
the agent continues to classify I as simple from the perspective of all information sets I2 > I1 such that
I ≥ I2; while we do not impose this requirement, it is satisfied in all of the examples of simple dominance
that we study.
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action in A(I).17 Note that a strategic plan does not specify the play at all continuation
information sets at which i may be called to move; rather, the strategic plan at I∗ only
specifies an action at the information sets in the planning horizon at I∗. Sets of strategic
plans (Si,I∗ (≻i))I∗∈Ii and (Si,I∗ (≻i))I∗∈Ii,≻i∈Pi

of agent i are called strategic collections.
An extensive-form mechanism (Γ, SN ,I), or simply a mechanism, is an extensive-

form game Γ together with a profile of strategic collections, SN ,I = ((Si,I∗ (≻i)) I∗∈Ii,≻i∈Pi
) i∈N .

For any strategic collection (Si,I∗(≻i))I∗∈Ii , we define the induced strategy Ŝi (≻i) ∶ Ii →
∪I∈IiA(I) as the mapping from information sets to actions defined by Ŝi (≻i) (I) = Si,I (≻i) (I)
for each I ∈ Ii; that is, Ŝi(≻i) is a standard game-theoretic strategy (complete contingent
plan of action) defined by agent i selecting the action that is called for by the strategic plan
Si,I at information set I itself. For any SN ,I and type realization ≻N , we can determine the
terminal history and associated outcome that is reached when the game is played according
to the profile of strategic collections SN ,I (≻N ) by following the profile of induced strategies
ŜN (≻N ). For each player i and type ≻i, the induced strategy Ŝi (≻i) also allows us to define
the set of on-path information sets for a strategic collection. These are the information
sets I ∈ Ii such that there exists strategies for the other players and Nature such that I is
on the path of play of Ŝi (≻i).

Induced strategies allow us to define equivalence of mechanisms: two mechanisms (Γ, SN ,I)
and (Γ′, S′N ,I) are equivalent if, for every profile of types ≻N , the distribution over outcomes
from the induced strategies ŜN (≻N ) in Γ is the same as that from the induced strategies
Ŝ′N (≻N ) in Γ′. This equivalence definition is purely outcome-based, and allows that (Γ, SN ,I)
and (Γ′, S′N ,I) have different planning horizons for the agents. Every mechanism implements
a mapping from preference profiles to outcomes, which we call the social choice rule. If
two mechanisms are equivalent, they implement the same social choice rule.

3.2 Simple dominance

Strategic plan Si,I∗ (≻i) is simply dominant at information set I∗ for type ≻i of player i
if the worst possible outcome for i in the continuation game assuming i follows Si,I∗ (≻i) (I)
at all I ∈ Ii,I∗ is weakly preferred by i to the best possible outcome for i in the continuation
game if i plays some other action a′ ≠ Si,I∗ (≻i) (I∗) at I∗. (We provide an example below to
illustrate this definition.) We say that a strategic collection (Si,I∗ (≻i))I∗∈Ii,≻i∈Pi

is simply
dominant if, for each type ≻i∈ Pi, the strategic plan Si,I∗ (≻i) is simply dominant at I∗

for each on-path information set I∗.18 We say that a game is simply dominant if it admits
17We focus on pure strategies; the extension to mixed strategies is straightforward.
18When assessing Si,I∗(≻i)(I), we take the worst case over all game paths consistent with i following

Si,I∗(≻i)(I) at all I ∈ Ii,I∗ , and compare to the best case over all game paths following any alternative
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simply dominant strategies.
Note that the collection of planning horizons, (Ii,I∗)I∗∈Ii , is a parameter of the model.

In the sequel, we focus on planning horizons that vary agents’ length of foresight. This is
not necessary, however, and there are other ways to conceptualize what information sets are
in the planning horizons.19 Given a fixed k ∈ {0,1,2, ...,∞}, we say that agent i has k-step
foresight if

Ii,I∗ = {I ∈ Ii∣I∗ ≤ I and I∗ < I1... < Ik < I ⇒ ∃ℓ ∈ {1, ..., k} s.t. Iℓ /∈ Ii} .

We refer to the resulting simply dominant strategic collections as k-step dominant and say
that a strategy is k-simple if it is the induced strategy for some k-step dominant strategic
collection. Varying k allows us to embed in our model the following special cases:

• k = ∞: That is, Ii,I∗ = {I ∈ Ii∣I∗ ≤ I}, and i can plan all of her future moves. In this
case, the induced strategy of any resulting strategic collection is obviously dominant
in the sense of Li (2017b), and further, any obviously dominant strategy Si in the
sense of Li (2017b) determines an obviously dominant strategic collection (Si,I∗)I∗∈Ii
in which Si,I∗ (I) = Si (I) for any I∗ ≤ I. For these reasons, we refer to such strategic
collections as obviously dominant. If a mechanism admits obviously dominant
strategic collections, then we say it is obviously strategy-proof (OSP).

• k = 1: That is, Ii,I∗ = {I ∈ Ii∣I∗ ≤ I and I∗ < I ′ < I ⇒ I ′ /∈ Ii}, and i can plan one move
ahead but not more. We refer to the resulting simply dominant strategic collections
as one-step dominant. The information sets in Ii,I∗ − {I∗} are called i’s next infor-
mation sets (from the perspective of I∗). If a mechanism admits one-step dominant
strategic collections, then we say it is one-step simple (OSS).

• k = 0: That is Ii,I∗ = {I∗}, and i cannot plan any future moves. We refer to the
resulting simply dominant strategic collections as strongly obviously dominant. In
this case, we can also talk about strongly obviously dominant strategies because, as for
obvious dominance, there is a one-to-one correspondence between strategic collections

action a′ ≠ Si,I∗(≻i)(I∗). While formulated slightly differently than Li (2017b), who invokes the notion of
an earliest point of departure between two strategies, our definition is formally equivalent to his when Ii,I∗
is the set of all continuation information sets at which i moves. Both we and Li (2017b) require dominance
only on-path; this choice is in line with e.g. Pearce’s (1984) extensive form rationalizability and Shimoji
and Watson’s (1998) conditional dominance. An alternative approach is to require simple dominance at all
nodes (information sets) in the game, including off-path ones.

19For instance, the planning horizon could consist of the information sets at which a measure of compu-
tational complexity of a decision problem is below some threshold; cf., e.g., Arora and Barak (2009) for a
survey of computational complexity criteria.

11



(Si,I∗)I∗∈Ii and the induced strategies Ŝi (I∗) = Si,I∗ (I∗). If a mechanism admits
strongly obviously dominant strategic collections, then we say it is strongly obviously
strategy-proof (SOSP).

Example. (Simple Dominance in Ascending Auctions). We illustrate simple domi-
nance by looking at an ascending auction for a single good. The payoff of an agent i is equal
to the agent’s value vi minus their payment if the agent receives the good and it is equal to
minus their payment otherwise. For the purposes of this example, an ascending auction is
a finite game with the following properties. At each non-terminal information set an agent
is called to play and can take one of two possible actions: Stay In or Drop Out. Only agents
who have not dropped out yet—called active agents—are called to play. Each non-terminal
information set I is associated with the current price p (I) ≥ 0, which weakly increases along
each path of play. Whenever there is only one active agent left, the game ends, though it
can also end when there are several active agents. One of the agents active when the game
ends is designated the winner. The winner receives the good and pays the price associated
with the last history at which this agent moved; a winner who has not yet moved pays 0.
All other agents receive no good and pay 0.

The ascending auction is OSP because the strategy of staying in as long as the current
price is below the agent’s value is obviously dominant, as shown by Li (2017b). The ascending
auction is also OSS because the following strategic collection is one-step dominant. For any
information set I∗ at which i moves and p (I∗) ≤ vi, i’s strategic plan is Si,I∗(I∗) = In and
Si,I∗(I) = Out for all next information sets I > I∗; for any information set I∗ at which i moves
and p (I∗) > vi, the strategic plan is Si,I∗(I) = Out for I = I∗ and for all next information
sets I > I∗. This strategic collection is one-step dominant because if p (I∗) ≤ vi then staying
in at I∗ and planning to drop out at the next information set gives a worst-case payoff of 0,
which is no worse than dropping out now; if p (I∗) > vi then dropping out at I∗ is weakly
better than any scenario following staying in. The ascending auction might be SOSP, for
instance when the starting prices are higher than the agents’ values. In general, however,
the ascending auction is not SOSP: Let i be the first mover and suppose the prices i might
see along the path of the game start strictly below vi, but prices further along the path are
strictly above vi. Then, at the first move of i, no move is strongly obviously dominant: the
worst case from choosing In results in a strictly negative payoff, which is worse than choosing
Out and getting 0. Thus, In is not strongly obviously dominant. Similarly, the payoff from
choosing Out is 0, which is worse than choosing In and winning at the current low price,
and so Out is not strongly obviously dominant, either.

Remark 1. (Plan updating and consistency) In the one-step dominant strategic collections
in the example above, the action an agent plans at I∗ for the next information set I >
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I∗ may differ from the action the agent chooses upon actually reaching I, i.e., we may
have Si,I∗(I) ≠ Si,I(I). There is no need for such action updating in obviously dominant
or strongly obviously dominant strategic collections. For each OSP collection there is an
equivalent OSP collection that is consistent in the following sense: Si,I∗(I) = Si,I(I) for all
I ∈ Ii,I∗ and all I∗ ∈ Ii. SOSP collections are always consistent.

We emphasize that agents with inconsistent strategic plans are not necessarily time-
inconsistent or irrational. Indeed, such agents might understand that they may adjust their
plans later, and think of the partial strategic plan Si,I∗ as an argument establishing that
playing Si,I∗(I∗) is better than any other action they could take at I∗. The tentativeness of
such partial plans is an important possibility in the under-explored game-theoretic paradigm
of making choices as they arise, a paradigm that Savage (1954) describes as “you can cross
that bridge when you come to it” (cf. Introduction).

3.3 Simplicity Gradations and Design Flexibility

A direct verification shows that the smaller the planning horizon, the stronger is the resulting
simplicity requirement. To formulate this result, for any planning horizons Ii,I∗ and I ′i,I∗
such that I i,I∗ ⊆ I ′i,I∗ , we say that a strategic collection (S′i,I∗ (≻i))≻i∈Pi

on I ′i,I∗ is an I ′i,I∗-
extension of a strategic collection (Si,I∗ (≻i))≻i∈Pi

on I i,I∗ if S′i,I∗ (≻i) (I) = Si,I∗ (≻i) (I) for
all I ∈ I i,I∗ .

Theorem 1. (Nesting of Simplicity Concepts). If planning horizons Ii,I∗ and I ′i,I∗ are
such that I i,I∗ ⊆ I ′i,I∗ and strategic collection Si,I∗ is simply dominant at I∗ for I i,I∗, then
any I ′i,I∗-extension of Si,I∗ is simply dominant at I∗ for I ′i,I∗ .

As a corollary, we conclude that the lower the parameter k, the more restrictive k-
step simplicity becomes. Further, our class of simple dominance concepts has a natural
lattice structure, with obvious dominance as its least demanding concept and strong obvious
dominance as the most demanding one.

Corollary 1. (i) Take k, k′ ∈ {0,1,2, ...,∞} and assume k < k′. Then, any strategic collection
that is k-step dominant is also k′-step dominant.

(ii) If a strategic collection (Si,I∗)I∗∈Ii is simply dominant for some collection of simple
information sets, then the induced strategy Ŝi (I∗) = Si,I∗ (I∗) is obviously dominant.

(iii) If the induced strategy Ŝi (I∗) = Si,I∗ (I∗) is strongly obviously dominant, then the
strategic collection is simply dominant for any (Ii,I∗)I∗∈Ii.

From an implementation perspective, an immediate consequence of Corollary 1 is that
the set of k-step simple implementable social choice rules weakly expands as k is increased.
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The following result shows that in general, this inclusion is strict: that is, stronger simplicity
constraints (lower k) reduce the flexibility of the designer.20

Theorem 2. (Simplicity-Flexibility Tradeoff) Let k, k′ ∈ {0,1,2, ...,∞} and assume
k′ > k. There exist preference environments and social choice rules implementable in k′-step
simple strategic collections, but not implementable in k-step simple strategic collections.

The presence of the simplicity-flexibility trade-off depends on the preference environment.
For instance, Theorem 6 shows that in some environments there is no loss in imposing one-
step simplicity (k = 1) relative to obvious strategy-proofness (k =∞): in these environments,
any social choice rule that is OSP-implementable is also OSS-implementable.

To get a sense of why the inclusion can be strict, consider an environment with transfers
in which there are at least two agents and each agent’s value for an object comes from the
same support with at least three distinct values. Suppose we want to allocate the object to
the highest-value agent. This social choice rule can be implemented via an ascending auction
and ascending auctions are OSS (we establish the one-step simplicity of ascending auctions
in Theorem 6). At the same time, this social choice rule, and the price discovery it entails,
cannot be implemented via SOSP mechanisms, which resemble posted prices (the posted
price characterization of SOSP is given by our Theorem 8). For k, k′ strictly larger than 0,
the comparison is more subtle. Our proof in the appendix constructs social rules that are
k′-step simple implementable but not k-step simple implementable in no-transfer single-unit
demand allocation environments.

3.4 Behavioral Microfoundations

We may think of simple strategic plans as providing guidance to a player that is unaffected
even when they may be confused about the game they are playing, in the sense that they
may mistake the game for a different game that has different players, actions, and precedence
relations at non-simple information sets. An alternative interpretation is that the player is
only given a partial description of the game: each time they are called to move, they are
told what happens at their own simple information sets, but not at any other non-simple
information set. If players have simply dominant strategic plans, the prediction of play is
unaffected by the player’s confusion or partial description of the game.

To formalize this idea, say that game Γ′ is indistinguishable from Γ from the per-
spective of agent i at information set I∗ of game Γ if there is an injection λ from the

20In particular, the theorem shows that for any k < ∞, there are social choice rules that are OSP-
implementable but not k-step implementable.
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set of agent i’s simple information sets Ii,I∗ in Γ into the set of agent i’s information sets I ′i
in Γ′ such that:

1. If I1, I2 ∈ Ii,I∗ and I1 precedes I2 in Γ, then λ (I1) precedes λ (I2) in Γ′.

2. For each I ∈ Ii,I∗ , there is a bijection ηI that maps actions at agent’s i information set
I in Γ onto actions at agent’s i information set λ (I) in Γ′.

3. An outcome is possible following action a at I ∈ Ii,I∗ in Γ if and only if this outcome
is possible following ηI (a) at λ (I) in Γ′.

We say that λ (I) is the game Γ′ counterpart of information set I and ηI (a) is the game Γ′

counterpart of action a at information set I in game Γ. The concept of indistinguishability
captures the idea that agent i understands the precedence relation among simple information
sets, as well as the available actions and possible outcomes at these information sets.

Simple dominance is equivalent to standard weak dominance on all games that are indis-
tinguishable from the game played. We say that a strategy Si of player i weakly dominates
strategy S′i in the continuation game beginning at I∗ if following strategy Si leads to weakly
better outcomes for i than following strategy S′i, irrespective of the strategies followed by
other players. Note that here, Si and S′i denote full strategies in the standard game-theoretic
sense of a complete contingent plan of action.

Theorem 3. (Behavioral Microfoundation). For each game Γ, agent i, type ≻i, and
collection of simple information sets (Ii,I∗)I∗∈Ii, the strategic plan Si,I∗ is simply dominant
from the perspective of I∗ ∈ Ii in Γ if and only if, in every game Γ′ that is indistinguishable
from Γ from the perspective of i at information set I∗, in the continuation game of Γ′ starting
at the counterpart of I∗, any strategy that at the counterpart of each I ∈ Ii,I∗ selects the
counterpart of Si,I∗ (I) weakly dominates any strategy that does not select the counterpart of
Si,I∗ (I∗) at the counterpart of I∗.

When the strategic collection is consistent, this result says that the induced global strat-
egy Si(I) = Si,I(I) is simply dominant in one game if and only if Si(I) is weakly dominant
in all indistinguishable games. When expressed in this way, this result corresponds to Li’s
(2017b) microfoundation for obvious strategy-proofness.21

21While the two results capture the same phenomenon, there is a slight difference between them even when
restricted to OSP, as Li’s (2017b) microfoundation assumes that λ is a bijection while we only require that
λ is an injection. This difference has no impact on the validity of the claim nor the proofs.
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3.5 Design Sufficiency of Perfect-Information Games

Under perfect information, each information set I contains a single history h and, to keep
the notation at the minimum, we identify history h and information set {h}. The planning
horizon at h∗ then becomes the set Hi,h∗ of simple histories and the collection of plan-
ning horizons becomes (Hi,h∗)h∗∈Hi

. We denote the corresponding strategic collections by
(Si,h∗)h∗∈Hi

.
Perfect-information games play a special role in designing simply dominant mechanisms

because for any imperfect-information simply dominant mechanism, we can find an equiv-
alent perfect-information one.22 To make this point precise, for any imperfect-information
game Γ, define the corresponding perfect-information game Γ′ with the same set of histories
as Γ. Given a collection of simple information sets (Ii,I∗)I∗∈Ii in Γ, we define the induced
collection of simple histories (Hi,h∗)h∗∈Hi

in Γ′ such that Hi,h∗ consists of all histories in Ii,I∗ .
For a strategic collection (Si,I∗)I∗∈Ii , we define the induced strategic collection (Si,h∗)h∗∈Hi

such that Si,h∗ (h) = Si,I∗ (I), where I is a continuation information set of I∗, h∗ ∈ I∗ and
h ∈ I.

Theorem 4. (Perfect-Information Reduction). If (Si,I∗)I∗∈Ii is simply dominant in
an imperfect-information game Γ with simple information sets (Ii,I∗)I∗∈Ii, then in the cor-
responding perfect information game Γ′ with the induced simple histories (Hi,h∗)h∗∈Hi

, the
induced strategic collection (Si,h∗)h∗∈Hi

is simply dominant.

To prove the theorem, consider an agent i with type ≻i. Notice that if some history h is
on-path for the strategic collection (Ŝi,h∗ (≻i))h∗∈Hi

in Γ′, then the corresponding information
set I ∋ h is on-path for the strategic collection (Ŝi,I∗ (≻i))I∗∈Ii in Γ. Furthermore, the worst
outcome following Si,h∗ (h) = Si,I∗ (I) in Γ′ is weakly better than the worst outcome over the
entire information set I when following this strategy. Similarly, the best outcome following
an alternative action a ≠ Si,h∗ (h) at h is worse than the best outcome following an alternative
action a ≠ Si,h∗ (h) over the entire information set h. Thus, if the strategic plan Si,I∗ (I) is
simply dominant in Γ, then the induced strategic plan Si,h∗ (≻i) is simply dominant in Γ′.

In light of Theorem 4, the restriction to perfect information games does not affect the
class of social choice rules that can be implemented in simple strategies. We hence adapt
this restriction in the study of mechanism design in the next two sections.

22An analogous property of obvious strategy-proofness was first asserted in a footnote in Ashlagi and
Gonczarowski (2018). Following our work, Mackenzie (2020) extended this property of obvious strategy-
proofness to extensive-form games without perfect recall.
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4 Characterizing Simple Mechanisms

We now consider three special cases of the above simplicity standards—obvious dominance,
one-step dominance, and strong obvious dominance—and characterize simple mechanisms
and social rules in environments both with and without transfers. To make our analysis
relevant for market design applications and to avoid general impossibility results such as the
Gibbard-Satterthwaite Theorem, we must allow some restrictions on the domains of agent
preferences. We formalize this as follows.

We take as a primitive a structural dominance relation over outcomes, denoted ⊵,
where ⊵ is a reflexive and transitive binary relation on X . The notation x ⊵ y is read as “x
weakly dominates y”.23 If x ⊵ y but not y ⊵ x, then we write x ⊳ y, and say that “x strictly
dominates y”. For instance, in environments with transfers, outcome x dominates outcome
y for an agent if the agent receives a higher transfer under outcome x, and all else is equal.
We say that a preference ranking ≿i is consistent with ⊵ if x ⊵ y implies that x ≿i y and
x ⊳ y implies that x ≻i y.

We allow the possibility that different agents have different dominance relations, ⊵i, and
therefore different preference domains. We assume that all rankings in Pi are consistent
with ⊵i. If x ⊵i y and y ⊵i x then x and y are ⊵i-equivalent. Any ⊵i determines an
equivalence partition of X . We refer to each element [x] i = {y ∈ X ∶ x ⊵i y and y ⊵i x} of
the equivalence partition as a payoff. Consistency implies that each preference ranking in
Pi induces a well-defined preference ranking over payoffs in the natural way: [x] i ≿i [y] i if
x ≿i y and [x] i ≻i [y] i if x ≻i y. To avoid unnecessary formalism, we use the same symbol for
preferences over payoffs as for preferences over outcomes, and write “payoff x” for [x] i and
phrases such as “payoff x obtains” when the realized outcome belongs to [x] i. Unless stated
otherwise, we assume in this section that the preference domain Pi is rich in the following
sense: the set of induced preferences over payoffs consists of all strict rankings over payoffs.24

The framework of rich preference domains is flexible and encompasses many standard
23For brevity, we write “weakly dominates” rather than “weakly structurally dominates” when the context

makes clear that we refer to outcomes, comparable in terms of ⊵, and not to strategies, comparable in the
game-theoretic sense of weak dominance.

24Our use of the term richness shares with other uses of the term in the literature the idea that the domain
of preferences contains sufficiently many profiles: if certain preference profiles belong to the domain, then
some other profiles belong to it as well (cf. Dasgupta, Hammond, and Maskin (1979) and Pycia (2012)). The
more outcome pairs that are comparable by the structural dominance relation ⊵i, the smaller the resulting
preference domain and less restrictive the simple dominance requirement. At one extreme, ⊵i is an identity
relation for each i ∈ N , agents’ preference domains consist of all strict rankings, and simple mechanisms
resemble dictatorships as in Gibbard (1973) and Satterthwaite (1975) and our Corollary 2. At the other
extreme, ⊵i compares all outcomes, each agent is indifferent among all outcomes, and any strategy in any
game is simple. In between these extremes, we have other classes of simple mechanisms, as we explore in
this section. We would like to thank referees for these clarifications.
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economic environments. Some examples of rich domains will help clarify the definitions and
notation.

• Voting: Every agent has strict preferences over all alternatives in X . This is captured
by the trivial dominance relation ⊵i in which x ⊵i y implies x = y for all i. Each agent’s
preference domain Pi partitions X into ∣X ∣ individual payoffs. Richness implies that
each Pi consists of all strict preference rankings over X .

• Allocating indivisible goods without transfers: Each x ∈ X describes the entire
allocation of goods to each of the agents. Each agent has strict preferences over each
bundle of goods she may receive, but is indifferent over how goods she does not receive
are assigned to others. This is captured by a dominance relation ⊵i for agent i defined
as follows: x ⊵i y if and only if agent i receives the same set of goods in outcomes x

and y. Each payoff of agent i can be identified with the set of objects she receives.
Richness implies that every strict ranking of these sets belongs to Pi for each i.

With these two examples in mind, we say that an environment is without transfers if the
dominance relation ⊵i is symmetric for all i.25 Non-symmetric dominance relations ⊵i allow
us to model transfers: all else equal, having more money dominates having less. Examples
of rich domains with transfers include:

• Social choice with transfers: Let X = Y ×WN , where Y is a set of substantive
outcomes andW ⊊ R a (finite) set of possible transfers. For a fixed y ∈ Y , agent i prefers
to pay less rather than more and is indifferent between any two outcomes that vary
only in other agents’ transfers. The structural dominance relation is (y,w) ⊵i (y′,w′)
if and only if y = y′ and wi ≥ w′i, where w ≡ (wi)i∈N is the profile of transfers.

• Auctions: Let X ⊆ NO×WN where O is a finite set of goods andW ⊊ R is a finite set
of transfers. Each agent i prefers to win more goods and to pay less rather than more.
Denoting by Oi the set of goods allocated to i and writing O = (Oi)i∈N , the structural
dominance relation is given by (O;w) ⊵i (O′;w′) if and only if Oi ⊇ O′i and wi ≥ w′i.

These are just a few examples of settings that fit into our general model. While richness
is a flexible assumption, not all preference domains are rich. For instance, domains of single-
peaked preferences are typically not rich. Arribillaga, Massó, and Neme (2020) show that
our millipede construction does not extend to single-peaked preference domains.

25A binary relation ⊵i is symmetric if x ⊵i y implies y ⊵i x. It is easy to see that this holds in the examples
without transfers above, but not in those with transfers below.
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4.1 Obvious Dominance

By Theorem 1, the weakest simplicity standard in our class is obvious dominance of Li
(2017b). Recall that in analyzing obvious dominance we do not need to distinguish between
strategies and strategic plans; thus, for simplicity of exposition, we focus on strategies in
this section. If a game Γ admits a profile of obviously dominant strategies, then the game
and the resulting mechanism are said to be obviously strategy-proof (OSP).

In this section, we focus on environments without transfers and show that any OSP game
is equivalent to a millipede game.26 Roughly speaking, a millipede game is a clinch-or-pass
game similar to a centipede game (Rosenthal, 1981), but with possibly more players and
more actions (“legs”) at each node. A simple example of a millipede game in an object
allocation environment is a serial dictatorship in which there are no passing moves and
all payoffs that are not precluded by the earlier choices of other agents are clinchable (cf.
Section 4.3).

As a preliminary step to define millipede games, we introduce the following definitions,
which apply to any game Γ. Given some history h, we say that payoff x is possible for
agent i at h if there is a terminal history h̄ ⊇ h at which agent i obtains payoff x. We use
Pi (h) to denote the set of possible payoffs for i at h. We say that agent i has clinched
payoff x at history h if at all terminal histories h̄ ⊇ h, agent i receives payoff x. If i moves
at h, takes action a ∈ A(h), and has clinched x at the history (h, a), then we call action a a
clinching action; any action at h that is not a clinching action is called a passing action.
We denote by Ci(h) the set of all payoffs x that are clinchable for i at h; that is, Ci(h)
is the set of payoffs for which there is an action a ∈ A(h) such that i has clinched x at the
history (h, a). At a terminal history h̄, no agent is called to move and there are no actions;
however, it is notationally convenient to define Ci(h̄) = {x}, where x is the payoff that i

obtains at terminal history h̄.
We further define C⊆i (h) = {x ∶ x ∈ Ci(h′) for some h′ ⊆ h s.t. ih′ = i} to be the set of

payoffs that i can clinch at some subhistory of h, and C⊂i (h) = {x ∶ x ∈ Ci(h′) for some h′ ⊊
h s.t. ih′ = i} to be the set of payoffs that i can clinch at some strict subhistory of h. Note
that while the definition of Ci(h) presumes that i moves at h or h is terminal, the payoff
sets Pi(h), C⊆i (h) and C⊂i (h) are well-defined for any h, whether i moves at h or not, and
whether h is terminal or not. Finally, consider a history h such that ih′ = i for some h′ ⊊ h
and either ih = i or h is a terminal history. We say that payoff x becomes impossible for i
at h if x ∈ Pi(h′) for all h′ ⊊ h such that ih′ = i, but x ∉ Pi(h). We say payoff x is previously
unclinchable at h if x ∉ C⊂i (h).

26This characterization complements Li’s (2017b) result that in binary allocation environments with trans-
fers, every OSP mechanism is equivalent to a personal clock auction; cf. Section 4.2 below.
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Given a mechanism (Γ, SN ) and a type ≻i, we call strategy Si(≻i) a greedy strategy if
at any history h ∈ Hi it satisfies the following: if the ≻i-best still-possible payoff in Pi(h) is
clinchable at h, then Si(≻i)(h) clinches this payoff; otherwise, Si(≻i) (h) is a passing action.
A greedy strategic plan is defined in the same way.27

Given these definitions, we define a millipede game as a finite extensive-form game of
perfect information that satisfies the following properties:

1. Nature either moves once, at the empty history h∅, or Nature has no moves.

2. At any history at which an agent moves, all but at most one action are clinching
actions, and following any clinching action, the agent does not move again.

3. At all h, if there exists a previously unclinchable payoff x that becomes impossible for
agent ih at h, then C⊂ih(h) ⊆ Cih(h).

We refer to millipede games with greedy strategies as millipede mechanisms. In a
millipede game, it is obviously dominant for an agent to clinch the best possible payoff at h

whenever it is clinchable. The last condition of the millipede definition ensures that passing
at h is obviously dominant when an agent’s best possible payoff at h is not clinchable.

Theorem 5. (Millipedes). Consider an environment without transfers. Every OSP mech-
anism is equivalent to a millipede mechanism. Every millipede mechanism is OSP.

This theorem is applicable in many environments. This includes allocation problems in
which agents care only about the object(s) they receive, in which case, clinching actions
correspond to taking a specified (set of) object(s) and leaving the remaining objects to
be distributed amongst the remaining agents. Theorem 5 also applies to standard social
choice problems in which no agent is indifferent between any two outcomes (e.g., voting),
in which case clinching corresponds to determining the final outcome for all agents. In such
environments, we have the following:

Corollary 2. Let each agent’s preference domain Pi be the space of all strict rankings over
outcomes X . Then, every OSP game is equivalent to a game in which either:

(i) the first agent to move can clinch any possible outcome and has no passing action; or
(ii) there are only two outcomes that are possible when the first agent moves, and the first

mover can either clinch any of them, or can clinch one of them or pass to a second agent,
who is presented with an analogous choice, etc.

27A stronger concept of a greedy strategy would additionally require that when passing, the agent takes
an action a such that they are indifferent between the best possible payoffs at h and (h, a). (Such an action
a exists because Pi (h) = ∪a∈A(h)Pi ((h, a)).) This distinction is immaterial for millipede games, since they
have at most one passing action at each history, and all of our results are valid for both concepts of greediness.
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Figure 1: An example of a non-dictatorial millipede game in a voting environment with two
outcomes, X = {x, y}. The obviously dominant (greedy) strategy profile is for any agent to
clinch if she is offered to clinch her preferred option among {x, y}, and otherwise pass.

The former case of Corollary 2 is the standard dictatorship, with a possibly restricted
set of outcomes. The latter case is a generalization that allows an agent to enforce one of
the two outcomes, but not the other, at her turn; see Figure 1 for an example. In particular,
this corollary gives an analogue of the Gibbard-Satterthwaite dictatorship result, with no
efficiency assumption.

The full proof of Theorem 5 is in the appendix; here, we provide a brief sketch of the
more interesting direction that for any OSP game Γ, there is an equivalent millipede game.
We construct this millipede game via the following transformations. Starting with any ar-
bitrary game, we begin by breaking information sets; this only shrinks the set of possible
outcomes any time an agent is called to play, which preserves the min/max obvious domi-
nance inequality. For similar reasons, we can shift all of Nature’s moves to the beginning of
the game, and so now have a perfect-information game Γ′ in which Nature moves once, as
the first mover.28 Second, if there are two passing actions a and a′ at some on-path history
h, then there are (by definition) at least two payoffs that are possible for i following each.
We show that obvious dominance then implies that i must have some continuation strategy
that can guarantee his top possible payoff in the continuation game following at least one of
a or a′. Then, we can construct an equivalent game via a transformation in which we add
an action that allows i to clinch this payoff already at h by making all such “future choices”
today. We also rely on Li’s pruning, in which the actions no type chooses are removed from
the game tree, cf. Appendix A.1. We repeat these transformations until there is at most one
passing action remaining. The final step of the proof is to show that these transformations
give us a millipede game. This last step relies on richness and shows that if there remains
some h such that agent i cannot clinch her favorite possible payoff at h, the game must
promise i that she will never be strictly worse off by passing, which is condition 3.

28Both parts of this transformation were first asserted for OSP in a footnote by Ashlagi and Gonczarowski
(2018); cf. our Theorem 4 and Lemma A.4.
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Figure 2: An example of a millipede game with two agents {i, j} and 100 objects
{o1, o2, . . . , o100}. If the first clinching is in an agent’s first 50 moves, then the other agent
is given the choice of clinching any object he or she could have clinched previously; if the
first clinching is after the clinching agent’s first 50 moves, then the other agent is given the
choice of clinching any still-available object.

4.2 One-Step Dominance

One-step simple dominance is stronger than obvious dominance. To see why this strengthen-
ing might be useful, recall that obviously dominant strategies may not be intuitively simple;
an already discussed stark example is White’s winning strategy in chess. As another exam-
ple, consider a no-transfer object allocation environment and the two-player millipede game
in Figure 2. At the first move, type o100 ≻i o1 ≻i o2 ≻i ⋯ ≻i o99 is offered her second-favorite
object, o1, while her top choice, o100, is possible. The obviously dominant greedy strategy
of this type is to pass; however, if she does so, she may not be offered the opportunity to
clinch her top object, o100, or even go back to her second-best object, o1, until far into the
future. Thus, while passing is obviously dominant, comprehending this requires the ability
to reason far into the future of the game and to perform lengthy backwards induction.29

The more demanding concept of one-step simplicity eliminates the intuitively complex,
yet still formally obviously dominant, strategies such as White’s winning strategy in chess
and the greedy strategy in the millipede of Figure 2, while still classifying greedy strategies
in serial dictatorships and ascending auctions as simple.

Binary allocation with transfers

Consider a set of outcomes X = Y ×RN , where Y ⊆ {0,1}N is a set of feasible allocations and
RN is the set of profiles of transfers, one for each agent. A generic allocation is denoted y and
a generic profile of transfers w = (wi)i∈N . Agents have types θi ∈ [θi, θi], where 0 ≤ θi < θi <∞,

29The first 100 moves of this millipede cannot be substantially shortened because, given the players’ greedy
strategies, for k = 1, ..., 50, i can obtain ok+1 if and only if j’s top choice is o100−k+1 or a lower-indexed object,
and j can obtain o100−k+1 if and only if i’s top choice is ok or a higher-indexed object.
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and each agent’s preferences are represented by a quasilinear utility function: ui(θi, y,w) =
θiyi + wi. Following Li (2017b), we call this preference environment binary allocation with
transfers.30 This framework captures many important environments of economic interest,
including single-unit auctions, procurement auctions, and binary public goods games.

For these environments, Li introduces the class of personal clock auctions, which gener-
alize the ascending auction in several ways: agents may face different individualized prices
(“clocks”); at any point, there may be multiple quitting actions that allow agents to drop
out of the auction, or multiple continuing actions that allow them to stay in the auction;
and when an agent quits, her transfer need not be zero. The key restrictions are that each
agent’s clock must be monotonic, and that whenever the personal price an agent faces strictly
changes, she must be offered an opportunity to quit. The formal definition of a personal
clock auction can be found in Supplementary Appendix B.3, where we also prove Theorem
6.

Li (2017b) shows that in binary allocation settings, OSP games are equivalent to personal
clock auctions. We strengthen this result to show that personal clock auctions are also
OSS. Thus, in the binary setting, there is no loss in imposing one-step dominance: any
OSP-implementable social choice rule is also implementable in one-step dominant strategic
collections.

Theorem 6. (OSS and Personal Clock Auctions). In binary allocation settings with
transfers, every one-step simple mechanism is equivalent to a personal clock auction with
one-step dominant strategic collections. Furthermore, every personal clock auction is one-
step simple.

Because our Corollary 1 shows that any OSS mechanism is also OSP, the first part
of the theorem follows from Li’s (2017b) result that any OSP mechanism is equivalent to
a personal clock auction with greedy strategies, provided we can find a profile of one-step
dominant strategic collections that replicates the play of Li’s greedy strategies. We construct
these collections in the proof of the second part of the theorem by generalizing the one-
step dominant strategic plans from the ascending auction example of Section 3. As in
the ascending auction, in a personal clock auction, whenever an agent’s price changes, she
is offered an opportunity to drop out. In effect, the strategic plan to stay in whenever an
agent’s personal price is below her valuation and to plan to drop out at any next information
set is one-step dominant.

30We allow for a continuum of types and transfers here in order to reproduce the binary allocation envi-
ronment of Li (2017b). Our simplicity concepts extend to this environment when we substitute inf for min
and sup for max in our definitions. Richness plays no role in the binary allocation results.
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Figure 3: An example of a monotonic millipede game. The game allocates three objects
A,B, and C to three agents (or players) 1,2 and 3. Agent 1 moves first and can clinch one
of the objects A or B, or can pass. The second move is made by agent 2, who either clinches
an object (in which case the allocation is fully determined) or passes (the passing move is
only possible following a pass by 1). Agent 3 only moves following two passes; this player
can then clinch any object. If agent 3 clinches A or B then the allocation is determined, and
if agent 3 clinches C then agent 1 can choose between A and B.

Environments without transfers

Recall the complex millipede game of Figure 2 that requires lengthy foresight on the part of
the agents. One-step simplicity eliminates these complex millipede games, and leaves only
millipedes that are monotonic in the following sense: a millipede game Γ is monotonic if,
for any agent i and any histories h, h′ such that: (h, a∗) ⊆ h′ where a∗ is a passing action
at h, ih =i, ih′ = i or h′ is terminal, and ih′′ ≠ i for any h′′ such that h ⊊ h′′ ⊊ h′, either (i)
Ci(h) ⊆ Ci(h′) or (ii) Pi(h) ∖ Ci(h) ⊆ Ci(h′). In words, this says that if an agent passes
at h, the next time she moves, she is offered to clinch either (i) everything she could have
clinched at h or (ii) everything that was possible, but not clinchable, at h. Some millipede
games, such as serial dictatorships in which each agent only moves once and has no passing
action, are trivially monotonic; for a less trivial example of a monotonic millipede game that
allows for passing actions and more complex allocation rules, see Figure 3. We say that a
mechanism is monotonic when the underlying game is.

Theorem 7. (Monotonic Millipedes). In environments without transfers, every one-
step simple millipede mechanism is equivalent to a monotonic millipede mechanism with
one-step dominant strategic collections. Furthermore, every monotonic millipede mechanism
is one-step simple.

At any history h in a monotonic millipede game, the one-step dominant strategic plan is
as follows: if the agent can clinch her top outcome that is possible at h, then she does so;

24



otherwise, the agent passes at h, and for any next history h′, the strategic plan is to clinch
her top possible outcome in Ci(h′). If clause (i) of monotonicity holds, then this is at least
as good as anything she could clinch at h (since the clinchable set weakly expands); if clause
(ii) of monotonicity holds, then she obtains her best possible payoff in Pi(h), which is again
at least as good as anything that was clinchable at h.

From the perspective of an agent playing in a game, monotonic games seem particularly
simple: each time an agent is called to move, she knows that if she chooses to pass, at her
next move, she will either be able to clinch everything she is offered to clinch currently, or
she will be able to clinch everything possible but currently unclinchable. On the other hand,
in a non-monotonic game such as that in Figure 2, an agent’s possible clinching options may
be strictly worse for many moves in the future, before eventually the agent is re-offered what
she was able to clinch in the past (or something better). If agents are unable to plan far
ahead in the game tree, it may be difficult to recognize that passing is obviously dominant
in such a game; in a monotonic game, however, agents only need to be able to plan at most
one step at a time to recognize that passing is a dominant choice.

Further, from a practical implementation perspective, monotonic games are also partic-
ularly simple for a designer to run dynamically: at each step, the designer only need tell an
agent her possible clinching options today, plus that if she passes, at her very next move,
her clinchable set will either weakly expand, or she will be offered everything possible that
she was not offered today. Such a partial, one-step-at-a-time description is simpler than
trying to describe all of the possibilities many moves in the future that would be necessary
to implement more complex, non-monotonic OSP games.

4.3 Strong Obvious Dominance, Choice Mechanisms, and Posted
Prices

In light of Theorem 1, the strongest simplicity standard in our class is strong obvious domi-
nance. If a game Γ admits a profile of strongly obviously dominant strategic collections, we
say that it is strongly obviously strategy-proof (SOSP). Random Priority is SOSP,31

but ascending auctions are not. Thus, SOSP further delineates the class of games that are
simple to play, by eliminating millipede games that require even one-step forward-looking

31By Random Priority we mean the following mechanism that is commonly used to allocate indivisible
objects to a group of agents: first, Nature randomly selecting an ordering of the agents, and then the
agents are called one at a time in this order to select their favorite still-remaining object at their turn
(cf. Abdulkadiroğlu and Sönmez (1998), Bogomolnaia and Moulin (2001), and Liu and Pycia (2011) who
study the direct mechanism implementation of Random Priority). This mechanism is also sometimes called
Random Serial Dictatorship, and is a special case of the more general sequential choice mechanisms we
characterize in this section.
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behavior. As there is a one-to-one correspondence between strongly obviously dominant
strategic collections and strongly obviously dominant strategies, for simplicity of exposition
we focus on strategies. Additionally, in this section we make use of the concept of an un-
dominated payoff, where we say that a payoff x is undominated in a subset of payoffs for
agent i if there is no payoff y in this subset such that y ⊳i x. A mechanism (Γ, (Si(≻i))i∈N )
is pruned if every information set in Γ is on the path of play for some type of some player.
Li (2017b) observed that every OSP mechanism is equivalent to a pruned OSP mechanism.
The same is true for SOSP, cf. Appendix A.1.

Strongly obviously strategy-proof games are particularly simple to play. Any strongly
obviously dominant strategy is greedy. Further, SOSP games can be implemented so that
each agent is called to move at most once and has at most one history at which her choice
of action is payoff-relevant. Formally, we say a history h at which agent i moves is payoff-
irrelevant for this agent if i receives the same payoff at all terminal histories h̄ ⊃ h; if i moves
at h and this history is not payoff-irrelevant, then it is payoff-relevant for i. The definition
of SOSP and richness of the preference domain give us the following.

Lemma 1. Along each game path of a pruned SOSP mechanism, there is at most one payoff-
relevant history for each agent.

This result—proven in Supplementary Appendix B.5—allows us to further conclude that,
for a given game path, the unique payoff-relevant history (if it exists) is the first history at
which an agent is called to move. While an agent might be called to act later in the game,
and her choice might influence the continuation game and the payoffs for other agents, it
cannot affect her own payoff.

Building on Lemma 1, we show that SOSP effectively implies that agents—in a se-
quence—are faced with choices from personalized menus, e.g., in allocation with transfers
this may be menus of object-price pairs. At the typical payoff-relevant history an agent is
offered a menu of payoffs that she can clinch, she selects one of the alternatives from the
menu, and she is never called to move again. More formally, we say that Γ is a sequential
choice game if it is a perfect-information game in which Nature moves first, if at all. The
agents then move sequentially, with each agent called to play at most once. The ordering
of the agents and the sets of possible outcomes at each history are determined by Nature’s
action and the actions taken by earlier agents. As long as there are either at least three
distinct undominated payoffs possible for the agent who is called to move or there is exactly
one such payoff, the agent can clinch any of the possible payoffs. When exactly two un-
dominated payoffs are possible for the agent who moves, the agent can be faced with either
(i) a set of clinching actions that allow the agent to clinch either of the two payoffs, (ii) a
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passing action and a set of clinching actions that allow the agent to clinch exactly one of
these payoffs. Note that we allow potentially many ways of clinching the same payoff; we
can conceptualize the many ways of clinching a fixed payoff as clinching it and sending a
message from a predetermined set of messages. Note also that (ii) does not allow the agent
to clinch the other payoff.

Theorem 8. (Sequential Choice). Every strongly obviously strategy-proof mechanism is
equivalent to a sequential choice mechanism with greedy strategies. Every sequential choice
mechanism with greedy strategies is strongly obviously strategy-proof.

Theorem 8 applies to any rich preference environment, including both those with and
without transfers. In an object allocation model without transfers, every SOSP mechanism
resembles a priority mechanism (or, sequential dictatorship), in which agents are called
sequentially and offered to clinch any object that still can be clinched given earlier clinching
choices; they pick their most preferred object and leave the game. The key difference between
a sequential choice game and priority mechanisms is that at an agent’s turn in sequential
choice, she need not be offered all still-available objects.

In environments with transfers, sequential choice games can be interpreted as sequential
posted-price games. In a binary allocation setting with a single good and transfers, each
agent is approached one at a time, and given a take-it-or-leave-it (TIOLI) offer of a price
at which she can purchase the good; if an agent refuses, the next agent is approached, and
given a (possibly different) TIOLI offer, etc. If there are multiple objects for sale, each agent
is offered a menu consisting of several bundles of objects with associated prices, and selects
her most preferred option from the menu.

Price mechanisms are ubiquitous in practice. Even on eBay, which began as an auc-
tion website, Einav et al. (2018) document a dramatic shift in the 2000s from auctions to
posted prices as the predominant selling mechanism. Posted prices have also garnered sig-
nificant attention in the computer science community. For instance, computing the optimal
allocation in a combinatorial Vickrey auction can be complex even from a computational
perspective, and several papers have shown good performance using sequential posted-price
mechanisms (e.g., Chawla, Hartline, Malec, and Sivan (2010) and Feldman, Gravin, and
Lucier (2014)). By formalizing a strategic simplicity-based explanation for the popularity of
these mechanisms, our Theorem 8 complements this literature.32

32Prior economic studies on the focal role of posted prices in mechanism design—e.g., Hagerty and Rogerson
(1987) and Copic and Ponsati (2016)—focused on bilateral trade, while our analysis is applicable to any
economic environment satisfying our richness assumption.
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5 Conclusion

We study the question of what makes a game simple to play, and introduce a general class of
simplicity standards that vary the planning horizons of agents in extensive-form imperfect-
information games. We allow agents that form a strategic plan only for a limited horizon in
the continuation game, and the agents may update these plans as the game progresses and
the future becomes the present. The least restrictive simplicity standard included in our class
is Li’s (2017b) obvious strategy-proofness, which presumes agents have unlimited foresight
of their own actions, while the strongest, strong obvious strategy-proofness, presumes no
foresight. For each of these standards, as well as an intermediate standard of one-step
simplicity, we provide characterizations of simple mechanisms in various environments with
and without transfers, and show that our simplicity standards delineate classes of mechanisms
that are commonly observed in practice. We show that SOSP delineates a class of posted-
price mechanisms, OSS delineates a class of ascending clock mechanisms, and OSP delineates
a richer class of mechanisms we call millipedes.33 Along the way, we provide a logically
consistent—though limited to simple games—approach to the analysis of agents with limited
foresight.

Our results contribute to the understanding of the fundamental trade-off between sim-
plicity of mechanisms and the ability to implement other social objectives, such as efficiency
and revenues. In environments with transfers, Vickrey (1961), Riley and Samuelson (1981),
Myerson (1981), Manelli and Vincent (2010), and Gershkov, Goeree, Kushnir, Moldovanu,
and Shi (2013) show that the efficiency and revenues achieved with Bayesian implementa-
tion can be replicated in dominant strategies; thus the accompanying increase in simplicity
may come without efficiency and revenue costs. Li (2017b) and our paper advance this in-
sight further and establish that obviously strategy-proof and one-step simple mechanisms
can also implement efficient outcomes (and revenue-maximizing outcomes).34 At the same
time, strong obvious dominance is more restrictive, and more severely limits the class of
implementable objectives. In environments with transfers, SOSP generally precludes effi-
ciency and revenue maximization.35 In environments without transfers, however, even SOSP

33Building on these results, Pycia and Troyan (2023) show that every obviously strategy-proof, Pareto
efficient, and symmetric mechanism is equivalent to Random Priority.

34In Li’s binary allocation settings, we show that all OSP mechanisms can be simplified to OSS.
35For instance, when we want to allocate an object to the highest value agent with transfers and with at

least two agents and agents’ values are drawn iid from among at least three values, an impossibility result
obtains: no SOSP and efficient mechanism exists. This is implied by Theorem 8. This also shows that SOSP
mechanisms raise less revenue than optimal auctions. On the other hand, Armstrong (1996) shows that
posted prices achieve good revenues when bundling allows the seller to equalize the valuations of buyers, and
Chawla, Hartline, Malec, and Sivan (2010) and Feldman, Gravin, and Lucier (2014) show that sequential
price mechanisms achieve decent revenues even without the bundling/equalization assumption.
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mechanisms—serial dictatorships—can achieve efficient outcomes. Building on the results of
the present paper, in single-unit demand allocation problems without transfers, Pycia and
Troyan (2023) and Pycia (2017) show that the restriction to strongly obvious strategy-proof
mechanisms allows the designer to achieve virtually the same efficiency and many other
objectives as those achievable in merely strategy-proof mechanisms. Thus in many envi-
ronments, simplicity entails no efficiency loss. In other environments, the trade-off between
simplicity and efficiency is more subtle. Our Theorem 2 shows that, in general, imposing
more restrictive simplicity standards on the mechanisms limits the set of implementable
social choice functions.36

Our work is complementary to the experimental literature on how mechanism partici-
pants behave and what elements of design enable them to play equilibrium strategies, cf.
e.g. Kagel et al. (1987) and Li (2017b). While this literature identifies implementation fea-
tures that facilitate play and confirms that obviously strategy-proof mechanisms are indeed
simpler to play than merely strategy-proof mechanisms, while strongly obviously strategy-
proof mechanisms are easier still and nearly all participants play them as expected (see Bo
and Hakimov, 2020 and Chakraborty and Kendall, 2022),37 our general theory of simplicity
opens new avenues for experimental investigations. For instance, we may define the sim-
plicity level of a game in terms of the smallest (in an inclusion sense) set of future histories
that an agent must see as simple in the sense of Section 4 in order to play the equilibrium
strategy correctly, or as the highest k that still allows the agent to play k-simple strategies
correctly. We may similarly define the measure of sophistication of experimental subjects as
the highest k that allows the subjects to play k-simple strategies correctly.

In sum, the sophistication of agents may vary across applications, and so it is important to
have a range of simplicity standards. For sophisticated agents, a weaker simplicity standard
ensures they play the intended strategies, allowing the designer more flexibility on other
objectives; however, for less sophisticated agents, a stronger standard of simplicity may
need to be imposed to ensure the intended strategies are played, with potential limitations
on flexibility. Understanding the simplicity of games and the simplicity-flexibility tradeoff
requires an adaptable approach to thinking about simplicity. This paper puts forth one such
proposal, though there is much work still to be done in fully exploring this trade-off and
testing various simplicity standards empirically.

36A different approach to the trade-off between simplicity and flexibility was proposed by Li and Dworczak
(2020), who study strategy-proofness, obvious strategy-proofness, and strong obvious strategy-proofness.
While we evaluate this tradeoff for designers who never confuse the mechanism participants, they evaluate
it for designers who can confuse participants. See also work in progress by Catonini and Xue (2021), who
study a weakening of one-step simplicity.

37For a test of the first claim see also Breitmoser and Schweighofer-Kodritsch (2019).
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A Appendix: Proofs

This appendix contains the central elements of the proofs of our main theorems. All lemmas
used in these proofs, as well as Theorem 6 and Lemma 1 from the main text, are proven in
the Supplementary Appendix.

A.1 Pruning Principle

Given a game Γ and strategy profile (Si(≻i))i∈N , the pruning of Γ with respect to (Si(≻i))i∈N
is a game Γ′ that is defined by starting with Γ and deleting all histories of Γ that are never
reached for any type profile. Li (2017b) introduced the following pruning principle: if
(Si(≻i))i∈N is obviously dominant for Γ, then the restriction of (Si(≻i))i∈N to Γ′ is obviously
dominant for Γ′, and both games result in the same outcome. Thus, for any OSP mecha-
nism, we can find an equivalent OSP pruned mechanism. For strong obvious dominance the
pruning principle remains valid: if (Si(≻i))i∈N is strongly obviously dominant for Γ, then the
restriction of (Si(≻i))i∈N to its pruning Γ′ is strongly obviously dominant for Γ′, and both
games result in the same outcome.

A.2 Proof of Theorem 2

In light of Corollary 1, it is sufficient to prove the result for k <∞ and k′ = k + 1. For k = 0,
the result follows from Theorems 6 and 8, applied to a single-unit auction with transfers.
Theorem 6 shows that in such a setting, personal clock auctions are efficient and OSS, while
Theorem 8 implies that an efficient, SOSP (k = 0) mechanism does not exist when there are
at least two agents whose valuations are drawn iid from at least 3 values (see also footnote
35). For k = 1 we construct below a 2-step simple social choice rule that cannot be one-step
implemented; we conclude the proof by extending this example to any larger k.

Consider an object allocation environment without transfers in which agents demand
exactly one object each. There are at least three agents i, j, ℓ and the objects included in
the game Γ are shown in Figure 4. Each branch of the game tree represents a clinching
action where the agent clinches the labeled object (x, x̃, etc.). The notation such as “ℓ→ γ”
below terminal nodes denotes that agent ℓ is assigned to object γ at this node, without
needing to take any action. The root of the game is agent i’s choice between clinching x and
passing. If i clinches x at the first move, then the game immediately ends with j assigned
αj and ℓ assigned αℓ, and further, this is the only terminal history at which j receives αj

and ℓ receives αℓ. Similarly, there are objects βℓ, γℓ, and δℓ that agent ℓ receives only at the
denoted terminal histories, and nowhere else in the game.

36



i

x

pass

j → αj

`→ α`

j

x̃

pass

x

i→ x
`→ β`

i

wz

`→ γ``→ δ`

`

ã
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Figure 4: A game in which greedy strategies are two-step simple and for which no equivalent
one-step simple mechanism exists.

It is straightforward to check that (Γ, SN ,H), where SN ,H is a profile of greedy strategic
collections, is k-step implementable for any k ≥ 2; in particular, this implies that Γ is OSP.
It is also easy to check that Γ itself is not OSS: the type of i that ranks w ≻i x ≻i z has
no one-step simple strategic plan when choosing between x and passing at the first move of
the game. Showing that the social choice rule implemented by (Γ, SN ,H) cannot be OSS-
implemented by any other mechanism is subtler, and we relegate the proof of the following
lemma establishing this statement to Supplementary Appendix B.1.

Lemma A.1. No one-step simple mechanism is equivalent to (Γ, SN ,H).

For k = 2, game Γ(2) in Figure 5 is an example that is k′-step simple for any k′ > k, but
for which no equivalent k-step simple mechanism exists. This game is similar in structure to
that of Figure 4, but has the following additions:
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Figure 5: A game in which greedy strategies are three-step simple and for which no equivalent
two-step simple mechanism exists.
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(i) In the subgame following i passing and j clinching x at its first move, we add the
possibility of i clinching z′. In this way we assure that i can then clinch any possible and
not previously clinchable object.38

(ii) In the subgame following i and j passing and ℓ clinching a at its first move, we add
the possibility of i clinching z′ (following which j can clinch x and x̃). In this way we assure
that i can clinch any possible and not previously clinchable object.

(iii) Following i’s pass at its second move on the focal path, we add a node at which ℓ

can clinch two new objects a′ and ã′ (following the clinching of a′, agent i can clinch any
possible not previously clinchable object, and then j can clinch any previously clinchable
object; following the clinching of ã′, agent j can clinch any previously clinchable object, and
then following the clinching of x agent i can clinch any possible but not previously clinchable
objects while following the clinching of x̃ agent i can clinch any previously clinchable object).

(iv) Following the pass at the added node for ℓ, we add a node at which i can clinch an
additional object z′. Following i clinching z′, ℓ and then j can clinch any object they could
clinch previously).

To prove the theorem for arbitrary k ≥ 2, we recursively create game Γ(k) by adding to
game Γ(k−1) further objects z(k), a(k), and ã(k), and then adding the analogues of subgames
(i)-(iv). In the analogues of subgames (i)-(ii), we now allow i to additionally clinch z(k); in
the analogue of (iii), a(k) and ã(k) play the roles of a and ã, and in the analogue of (iv) z(k)

plays the role of z.
It is straightforward to check that (Γ(k), S(k)N ,H) is (k + 1)-step simple but not k-step

simple, where S
(k)
N ,H is a profile of greedy strategic collections. Showing that no equivalent

mechanism is k-step simple is done similarly to the k = 1 case. The details can be found in
Supplementary Appendix B.1.

Lemma A.2. For any k ≥ 2, no k-step-simple mechanism is equivalent to (Γ(k), S(k)N ,H).

Lemmas A.1 and A.2 establish the result for k ≥ 1. ∎

A.3 Proof of Theorem 3

The proof develops the proof of the similar result for OSP in Li (2017b). For one direction
of implication, suppose the strategic plan Si,I∗ is simply dominant from the perspective of
I∗ ∈ Ii in Γ. Then any outcome that is possible after playing Si,I∗ at all information nodes
I ∈ Ii,I∗ is weakly better than any outcome that is possible after playing S′i (I∗) ≠ Si,I∗ (I∗)
in Γ, and hence the analogue of this “weakly better” comparison applies to the counterparts

38This property and the property in (ii) were also true in game Γ in Figure 4 and these two modifications
simply reestablish these properties for the game Γ(2) in Figure 5, in which z′ becomes possible for i.
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of these actions in any game Γ′ that is indistinguishable from Γ from the perspective of i at
I∗ (by condition (3) of indistinguishability). Hence, in any such Γ′, every strategy S′i that
calls for playing the counterparts of actions Si,I∗ (I) for counterparts of all I ∈ Ii,I∗ weakly
dominates any strategy S′′i that does not call for playing the counterpart of Si,I∗ (I∗) at the
counterpart of I∗.

For the other direction of implication, fix information set I∗ at which i moves, preference
ranking ≿i of agent i, and a partial strategic plan Si,I∗ such that in every game Γ′ that is
indistinguishable from Γ from the perspective of agent i at I∗, any strategy S′i that plays
counterparts of Si,I∗ (I) for all counterparts of I ∈ Ii,I∗ weakly dominates any strategy S′′i
that plays at the counterpart of I∗ another action than the counterpart of Si,I∗ (I∗). Our
goal is to show that any outcome that is possible when i follows Si,I∗ at information sets Ii,I∗
is ≿i -weakly preferred to any outcome that is possible after i plays any a ≠ Si,I∗ (I∗) at I∗

in game Γ. To prove it consider Γ′ that differs from Γ only in that all moves of agent i and
other agents that follow history h∗ but are not not in Ii,h∗ are made by Nature instead of the
party making them in Γ and that Nature puts positive probability on all its possible moves.
Notice that such Γ′ is indistinguishable from Γ from the perspective of i at I∗. As in Γ′ any
strategy that selects counterparts of Si,I∗ at any counterpart of I ∈ Ii,I∗ weakly dominates
any strategy S′′i that selects a at the counterpart of I∗, we conclude from condition (3) of
indistinguishability that, in Γ, any outcome that is possible after i follows Si,I∗ at information
sets in Ii,I∗ is weakly better than any outcome that is possible following a. ∎

A.4 Proof of Theorem 5

Section 4 introduces the notions of possible and clinchable payoffs at a history h, and the
sets of such payoffs, denoted Pi(h) and Ci(h), respectively. For the proof, we also need
the notion of a guaranteeable payoff: a payoff x is guaranteeable for i at h if there is
some continuation strategy Si such that i receives payoff x at all terminal histories h̄ ⊇ h

that are consistent with i following Si. We use Gi(h) to denote the set of payoffs that are
guaranteeable for i at history h.

The proof is broken down into five steps, stated as Lemmas A.3-A.7 below. The proofs of
these lemmas can be found in Supplementary Appendix B.2. First, we check there that all
millipede games with greedy strategies are OSP, establishing one direction of the theorem.

Lemma A.3. Millipede games with greedy strategies are obviously strategy-proof.

Given Li’s pruning principle (see Subsection A.1), the converse implication of Theorem
5—that all OSP mechanisms are equivalent to millipedes—follows from the remaining four
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lemmas.39 Lemma A.4 develops Theorem 4 (see this theorem for a discussion):

Lemma A.4. Every OSP game is equivalent to an OSP game with perfect information in
which Nature moves at most once, as the first mover.

Lemma A.5 shows that if a game is OSP, then at every history, for all actions a with the
exception of possibly one special action a∗, all payoffs that are possible following a are also
guaranteeable at h.40

Lemma A.5. Let Γ be an obviously strategy-proof game of perfect information that is pruned
with respect to the obviously dominant strategy profile (Si(≻i))i∈N . Consider a history h

where agent ih = i is called to move. There is at most one action a∗ ∈ A(h) such that
Pi((h, a∗)) /⊆ Gi(h).

The above lemma leaves open the possibility that there are several actions that can
ultimately lead to multiple final payoffs for i, which can happen when different payoffs are
guaranteeable for i by following different strategies in the future of the game. The next
lemma shows that if this is the case, we can always construct an equivalent OSP game such
that all actions except for possibly one are clinching actions.

Lemma A.6. For any OSP game Γ, there exists an equivalent OSP game Γ′ such that the
following hold at each h ∈H (where i is the agent called to move at h):

(i) At least ∣A(h)∣ − 1 actions at h are clinching actions.
(ii) For every payoff x ∈ Gi(h), there exists an action ax ∈ A(h) that clinches x for i.
(iii) If Pi(h) = Gi(h), then all a ∈ A(h) are clinching actions and ih′ ≠ i for any h′ ⊋ h.

The final lemma of the proof establishes the payoff guarantees in the game constructed
in the previous lemmas.

Lemma A.7. Let (Γ, SN ) be an obviously strategy-proof mechanism that satisfies the con-
clusions of Lemmas A.4 and A.6. At all h, if there exists a previously unclinchable payoff z

that becomes impossible for agent ih at h, then C⊂ih(h) ⊆ Ci(h).

This lemma concludes the proof of Theorem 5. ∎
39We actually prove a slightly stronger statement, which is that every OSP game is equivalent to a millipede

game that satisfies the following additional property: for all i, all h at which i moves, and all x ∈ Gi(h),
there exists an action ax ∈ A(h) that clinches x (see Lemma A.6 below).

40We emphasize the distinction between a payoff x being “guaranteeable” vs. “clinchable”: the latter
means the agent receives x at all terminal histories, while the former means there is a continuation strategy
Si such that she receives x at all terminal histories consistent with Si.
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A.5 Proof of Theorem 7

We first prove the second statement. Let Γ be a monotonic millipede game. Fix an agent i,
and, for any history h∗ at which i moves, let x̄h∗ = Top(≻i, Pi(h∗)) and ȳh∗ = Top(≻i,Ci(h∗)).
Let Hi,h∗ = {h ∈ Hi∣h∗ ⊊ h′ ⊊ h Ô⇒ h′ ∉ Hi} be the set of one-step simple nodes. Consider
the following strategic plan for any h∗:

• If x̄h∗ ∈ Ci(h∗), then Si,h∗(h∗) = ax̄h∗ , where ax̄h∗ ∈ A(h∗) is a clinching action for x̄h∗ .

• If x̄h∗ ∉ Ci(h∗), then Si,h∗(h∗) = a∗ (i passes at h∗), and, for any other h ∈Hi,h∗ :

– If Pi(h∗) ∖Ci(h∗) ⊆ Ci(h), then Si,h∗(h∗) = ax̄h∗ .

– Else, we have Ci(h∗) ⊆ Ci(h) (by monotonicity) and we set Si,h∗(h∗) = aȳh∗ .

It is straightforward to verify that this strategic plan is one-step dominant at any h∗, and
thus the corresponding strategic collection (Si,h∗)h∗∈Hi

is also one-step dominant.
In order to prove the first statement, let (Γ, SN ,H) be a millipede mechanism with a

profile of one-step dominant strategic collections SN ,H. Begin by constructing an equiva-
lent millipede mechanism that satisfies Lemma A.6. Note that the transformations used in
the proof to construct the equivalent millipede mechanism are one-step dominance preserv-
ing—i.e., if (Γ, SN ,H) was an OSS millipede mechanism before the transformation, then the
transformed game (Γ′, S′N ,H) is another OSS millipede mechanism that satisfies Lemma A.6.
It remains to show:

Lemma A.8. Any OSS millipede mechanism that, at each h ∈ H, satisfies conditions (i),
(ii), and (iii) of Lemma A.6 is monotonic.

We prove this lemma in Supplementary Appendix B.4. ∎

A.6 Proof of Theorem 8

That sequential choice mechanisms are SOSP is immediate from the definition, and so we
focus on proving that every SOSP mechanism is equivalent to a sequential choice mechanism.
Following the same reasoning as in the proof of Lemma A.4, given any SOSP mechanism, we
can construct an equivalent SOSP mechanism of perfect information in which Nature moves
at most once, as the first mover. It remains to analyze the subgame after a potential move
by Nature and to show that every perfect-information SOSP mechanism in which there are
no moves by Nature is equivalent to a sequential choice mechanism.

Let (Γ, SN ) be such a mechanism. In line with the discussion in Section A.1, we can
assume that Γ is pruned. By Lemma 1, each agent i can have at most one payoff-relevant
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history along any path of Γ, and this history (if it exists) is the first time i is called to play.
Consider any such history hi

0. If there is some other history h′ ⊃ hi
0 at which i is called to

play, then history h′ must be payoff-irrelevant for i; in other words, there is some payoff
x such that Pi((h′, a′)) = {x} for all a′ ∈ A(h′). Using the same technique as in the proof
of Lemma A.6, we construct an equivalent pruned game in which at history hi

0, i is asked
to also choose her actions for all successor histories h′ ⊃ hi

0 at which she might be called
to play, and then is not called to play again after hi

0. Since all of these future histories
were payoff-irrelevant for i, the new game continues to be strongly obvious dominant for i.
Strong obvious dominance is also preserved for all j ≠ i, since having i make all of her choices
earlier only shrinks the set of possible outcomes any time j is called to move, and thus, if
some action was strongly obviously dominant in the old game, the analogous action(s) will
be strongly obviously dominant in the new game. Repeating this for every agent and every
history, we construct a pruned SOSP game Γ′ that is equivalent to Γ and in which each agent
is called to move at most once along any path of play. It remains to show

Lemma A.9. Γ′ with greedy strategies is a sequential choice mechanism.

We prove this lemma in Supplementary Appendix B.6. ∎
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B Supplementary Appendix: Omitted Proofs (For On-
line Publication)

This supplementary appendix contains the proofs of the lemmas used in the proofs of the
main theorems in Appendix A, as well as the full proofs of Theorem 6 and Lemma 1 from
the main text.

B.1 Proofs of Lemmas for Theorem 2

Proof of Lemma A.1. In order to show that there is no OSS mechanism that is equivalent to
Γ, suppose, by way of contradiction, that there is such mechanism with game Γ̃ and a profile
of OSS strategic plans. Let S̃ be the profile of strategies in Γ̃ induced by the strategic plans;
by Theorem 1, this profile is obviously dominant.

The proof proceeds in a series of steps, which we label 1.1-1.6. (The labeling k.1 − k.6
is used because, after proving the result for k = 1, we use analogues of these steps to prove
Lemma A.2 for arbitrary k.)

Step 1.1. In Γ̃, the first mover must be i, and x must be guaranteeable for i. Furthermore,
at the empty history, w and z are not guaranteeable for i, but there is a unique action after
which w and z are possible. This action is taken by all types of player i that rank either w

or z first; we call this action i’s focal action.
Proof of Step 1.1. First notice that i must be the first mover. Indeed, in mechanism Γ,

agent j receives αj if and only if agent i prefers x to w and z. Assume that, under Γ̃, agent j
moves first. Something must be guaranteeable for agent j at this history, say λ.41 If λ = αj,
then we have non-equivalence when j prefers αj the most and agent i does not prefer x to
w and z. If λ ≠ αj, then, we have non-equivalence when j prefers λ the most and i prefers x

to w and z. Therefore, the first mover cannot be j. As the same argument works for agent
ℓ, the first mover must be i.

Second, note that equivalence implies that i obtains x for any preference profile such that
i prefers x the most, and therefore, x is guaranteeable at the first move in Γ̃. Analogously, w
and z must be possible but not guaranteeable for i at the first move. To see that w cannot
be guaranteeable, note that if it were, i would receive w for all preference profiles where she
ranked it first, which is not the case in Γ, and so equivalence is violated; the same holds for
z. By equivalence, both w and z are possible for i, i.e., w, z ∈ Pi(h). Further, there must
be a unique action a∗ such that w, z ∈ Pi((h, a∗)). If there were two actions a1, a2 such that

41That something must be guaranteeable follows because each history has at least two actions, and in
any OSP game, there can be at most one action such that there is some payoff that is possible, but not
guaranteeable (see the proof of Theorem 5).
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w were possible after both, then any type that prefers w the most would have no obviously
dominant action, since w is not guaranteeable; the same holds for z. Therefore, each of w
and z are possible after exactly one action, label them aw and az. If aw ≠ az, then any
type that ranks w first and z second would have no obviously dominant action.42 Therefore,
aw = az; we call this action i’s focal action. Since w and z are possible following only the
focal action, all types that rank either w or z first must select it. This completes the proof
of Step 1.1.

Step 1.2. In Γ̃, at the history following the first focal action by i, agent j moves. At this
history, both x̃ and x are guaranteeable for j, while a is not guaranteeable. Further, there is
a unique action after which a is possible, and this action is taken by all types of j who rank
a first; we call this action j’s focal action.

Proof of Step 1.2. Since, per Step 1.1, both w and z are possible for i following the focal
action, the focal action cannot lead to a terminal history, and so there must be an agent
who moves. We start by showing that the mover must be j. Note that in Γ, agent ℓ receives
βℓ if and only if agent i prefers either w or z to x, and agent j prefers x̃ the most out of
{x, x̃, a}. Suppose that i prefers either w or z to x, so that i follows the focal action at the
initial history. By the same logic as in Step 1.1, if agent ℓ is the next mover, she must be
able to guarantee some payoff, say γ. If γ = βℓ, this would lead to a non-equivalence when ℓ

ranks γ first and j ranks x first. If γ ≠ βℓ, then we have a non-equivalence when ℓ ranks γ

first and j ranks x̃ first. Therefore, ℓ cannot be the next mover, and neither can be i (as i

just moved) and so it must be j.
The equivalence of Γ and Γ̃ implies that for any profile such that i prefers w or z over x

and j prefers x the most, j receives x. Because, per Step 1.1, all types of i take the focal
action in Γ̃, we conclude that following i’s focal action, j must be able to guarantee himself
x. The same argument applies for x̃. Similarly, equivalence implies that there must be an
action for j such that a is possible. Outcome a cannot be guaranteeable for j, because if it
were, then j would receive a for all preference profiles where i ranks w or z first and j ranks
a first, which is not the case in Γ. By an argument similar to Step 1.1, there cannot be any
other actions after which a is possible, and all types of j that rank a first must select this
action. We label this action j’s focal action.

Step 1.3. In Γ̃, following i′s focal action and j’s focal action, there might be any finite
number of consecutive histories at which i and j move. At these histories where i moves,
i can clinch x, but neither w nor z are guaranteeable, and there is a unique action (the

42Since w is not guaranteeable and z is not possible after aw, the worst case from any strategy that selects
aw is strictly worse than z, which is possible from az. Similarly, since w is not possible following az, the
worst case is strictly worse than w, which is possible from aw. Note that an analogous argument would apply
to any type that ranks z first and w second.
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focal action) after which w and z are possible and that is taken by all types of i that rank
w or z first. At these histories where j moves, both x̃ and x are guaranteeable, but a is not
guaranteeable, and there is a unique action (the focal action) after which a is possible and
is taken by all types of j that rank a first. Following this sequence of focal actions, agent ℓ

moves.
Proof of Step 1.3. Since, per Step 1.2, a is possible, but not guaranteeable following j’s

focal action, the focal action cannot lead to a terminal history, and so must lead to a history
at which an agent moves. As j just moved, the next mover must be either i or ℓ. If the next
mover is i, as the history is on-path for all types of i who prefer w or z over x, the OSS
property of Γ̃ implies that either x or else both w and z are clinchable for i. Equivalence
implies that neither w nor z can be clinchable for i: if w were clinchable, then i receives w

for all profiles such that i prefers w the most and j prefers a the most, which is not the case
in Γ; an analogous argument applies for z. Therefore, x must be clinchable. Furthermore,
w and z are possible but not guaranteeable for i, and so, as in Step 1.1, OSP implies that
there is a unique action after which both w and z are possible, and all types that rank either
w or z first takes this action (note that these types must have taken the focal action at i’s
initial move, and so are on-path); we call this action the focal action.

Following the focal action by i, the next mover must be j or ℓ. If it is j, then an analogous
argument as for i shows that this agent must have both x, x̃ clinchable, and that there must
be a unique action after which a is possible but not guaranteeable; we call it the focal action.

Following j’s focal action, the next move is by i or ℓ. If it is by i then the above argument
applies again. We might then have a sequence of moves by i and j to which the above two
arguments apply. As the game is finite and at the end of every focal action in the sequence
more than one outcome is possible, the focal path of the game must lead to a history at
which ℓ is called to play. This proves Step 1.3.

Step 1.4. In Γ̃, at ℓ’s move following the sequence of focal actions described in Step 1.3,
both ã and a are guaranteeable for ℓ, while neither c nor x are guaranteeable. There is also a
unique action (the focal action) after which c and x are possible for ℓ. This action is taken
by all types of ℓ that rank c first.

Proof of Step 1.4. Using arguments similar to Step 1.2, equivalence implies that at ℓ’s
move, both ã and a are guaranteeable for ℓ, while neither c nor x are guaranteeable, but
both c and x are possible following a unique action that is taken by all types of agent ℓ that
rank c first. Since c is not guaranteeable, this action cannot lead to a terminal history. Since
c is possible following only the focal action, all types of ℓ that rank c first must select this
action. This proves Step 1.4.

Step 1.5. In Γ̃, following the above sequence of focal actions that ends with the first focal
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action by ℓ, there might be any finite number of consecutive histories at which j and ℓ move.
Each of these histories has a unique action (the focal action) after which a is possible for
j’s moves, and c and x are possible for ℓ’s moves. All types of j that rank a first and all
types of ℓ that rank c first take their respective focal actions. Following this sequence of focal
actions, the next mover is i.

Proof of Step 1.5. Since there are multiple possible outcomes for k following her focal
action, the focal action cannot lead to a terminal history. As k just moved, the next mover
must be either i or j. First consider the case in which j moves next. The OSS property
implies that either both x and x̃ are clinchable for j, or a is clinchable for j. Consider the
latter case. If this were true, then under a preference profile where i prefers w most and z

second, j prefers a most, and ℓ prefers c most, j would receive a, which is not the case in
Γ. Therefore, j must be able to clinch x and x̃. By equivalence, a must be possible for j,
but not guaranteeable, and so once again there must be a unique focal action after which a

is possible and that is taken by all types of j that prefer a the most (note that all of these
types have passed at j’s prior moves, and so are on-path). Following the focal action, the
next mover is i or ℓ. If it is ℓ, then an analogous argument implies that ℓ must be able to
clinch a and ã, with c possible but not guaranteeable following a unique focal action. There
may again be a sequence of moves by j and ℓ for which this argument can be repeated. As
the game is finite and at the end of every focal action more than one outcome is possible,
the focal path must lead to a history at which i is called to play. This proves step 1.5.

Step 1.6. In Γ̃, at i’s move following the sequence of focal actions described in Step 1.5,
x is not clinchable for i.43 At this move, there is a unique action (the focal action) after
which w is possible for i; the focal action is also the unique action after which x is possible
for i. This focal action is taken by all types of i that rank w first.

Proof of Step 1.6. By way of contradiction, suppose x is clinchable for i. Then OSP
implies that in the continuation game following i’s clinching of x, there must be a terminal
history at which j receives a: if there were not, then the type of j that prefers a the most
and x second would have no obviously dominant action at j’s prior moves. At this terminal
history, agent ℓ must be assigned something other than x (which was assigned to i) or a

(which was assigned to j). But then, the type of ℓ that prefers x the most and a second has
no obviously dominant action at ℓ’s prior moves, which is a contradiction.44

An analogous argument to that which showed that there is a unique action after which
w is possible for i in Step 1.1, tell us that there is a unique action (the focal action) after

43The argument shows that x not only is not clinchable for i but also not guaranteeable.
44Note that by equivalence, x must be possible for ℓ at these prior moves, since in Γ, k receives x for type

profiles such that i ranks w first, j ranks a first, and ℓ ranks x first.
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which w is possible for i. By OSP, types of i ranking w first take this action. An analogous
argument shows that the focal action is the unique action after which x is possible.

Finishing the proof for k = 1.
As the previous step shows that x is not clinchable at the move of i considered there,

OSS implies that both w and z must be clinchable for i. This implies that for preference
profiles such that i ranks w first and x second, j ranks a first, and k ranks c first, agent i

is assigned w. However, under such profiles in Γ, i receives x, which is a contradiction to
equivalence. ∎

Proof of Lemma A.2. Take any k ≥ 2. By way of contradiction, suppose that Γ̃(k) with
a profile of strategic plans is a k-step simple mechanism equivalent to Γ(k) with greedy
strategic plans. The proof begins by repeating steps 1.1-1.6 from the proof of Lemma A.1
above, with the only change being that Γ(k) plays the role of Γ and Γ̃(k) plays the role of Γ̃.
Then, we continue with the addition of steps k′.3-k′.6 for k′ = 2,3, . . . , k. Each step k′.3-k′.6
is analogous to the corresponding step 1.3-1.6 from above, except that a(k) plays the role
of a, ã(k) plays the role of ã, and z(k) plays the role of z. Finally, the proof for arbitrary k

concludes with a final step that is the direct analogue of the finishing step for k = 1, except
that we apply k-step simplicity instead of OSS. ∎

B.2 Proofs of Lemmas for Theorem 5

Proof of Lemma A.3. Let Γ be a millipede game. For a set X of payoffs of agent i and a type
≻i, let Top(≻i,X) be the best payoff in X according to preferences ≻i. Consider some profile
of greedy strategies (Si(⋅))i∈N . If Top(≻i,Ci(h)) = Top(≻i, Pi(h)), then clinching a top payoff
is obviously dominant at h. What remains to be shown is if Top(≻i,Ci(h)) ≠ Top(≻i, Pi(h)),
then passing is obviously dominant at h.

Assume that there exists a history h that is on the path of play for type ≻i when following
Si(≻i) such that Top(≻i,Ci(h)) ≠ Top(≻i, Pi(h)), yet passing is not obviously dominant at
h; further, let h be any earliest such history for which this is true. To shorten notation, let
xP (h) = Top(≻i, Pi(h)), xC(h) = Top(≻i,Ci(h)), and let xW (h) be the worst possible payoff
from passing and continuing to follow Si(≻i) at all future nodes.

First, note that xW (h) ≿i xW (h′) for all h′ ⊊ h such that ih′ = i. Since passing is obviously
dominant at all h′ ⊊ h, we have xW (h′) ≿i xC(h′), and together, these imply that xW (h) ≿i
xC(h′) for all such h′. At h, since passing is not obviously dominant and all other actions are
clinching actions, we have xC(h) ≻i xW (h); further, since Top(≻i,Ci(h)) ≠ Top(≻i, Pi(h)),
there must be some x′ ∈ Pi(h) ∖ Ci(h) such that x′ ≻i xC(h) ≻i xW (h). The above implies
that x′ ≻i xC(h) ≻i xC(h′) for all h′ ⊊ h such that ih′ = i.
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Let X0 = {x′ ∶ x′ ∈ Pi(h) and x′ ≻i xC(h)}; in words, X0 is a set of payoffs that are
possible at all h′ ⊆ h, and are strictly better than anything that was clinchable at any h′ ⊆ h
(and therefore have never been clinchable themselves). Order the elements in X0 according
to ≻i, and without loss of generality, let x1 ≻i x2 ≻i ⋯ ≻i xM .

Consider a path of play starting from h that is consistent with Si(≻i) and ends in a
terminal history h̄ at which i receives xW (h). For every xm ∈ X0, let hm denote the earliest
history on this path such that xm ∉ Pi(hm) and either (i) ih = i or (ii) hm is terminal. Note
that because i is ultimately receiving payoff xW (h), such a history hm exists for all xm ∈X0.
Let ĥ−m be the earliest history at which i moves and at which all payoffs strictly preferred
to xm are no longer possible.

Claim. For all xm ∈X0 and all h′ ⊆ h̄, we have xm ∉ Ci(h′).

Proof of claim. First, note that xm ∉ Ci(h′) for any h′ ⊆ h by construction. We show that
xm ∉ Ci(h′) at any h̄ ⊇ h′ ⊃ h as well. Start by considering m = 1, and assume x1 ∈ Ci(h′) for
some h̄ ⊇ h′ ⊃ h. By definition, x1 = Top(≻i, Pi(h)); since h′ ⊃ h implies that Pi(h′) ⊆ Pi(h),
we have that x1 = Top(≻i, Pi(h′)) as well. Since x1 ∈ Ci(h′) by supposition, greedy strategies
direct i to clinch x1, which contradicts that she receives xW (h).45

Now, consider an arbitrary m, and assume that for all m′ = 1, . . . ,m − 1, payoff xm′ is
not clinchable at any h′ ⊆ h̄, but xm is clinchable at some h′ ⊆ h̄. Let xm′ ≻i xm be a payoff
that becomes impossible at ĥ−m ⊆ h̄; if such payoff does not exist then the argument of the
paragraph above applies. There are two cases:

Case (i): h′ ⊊ ĥ−m. This is the case in which xm is clinchable while there is some
strictly preferred payoff xm′ ≻i xm that is still possible. By assumption, all {x1, . . . , xm−1} are
previously unclinchable at ĥ−m, and so xm′ is previously unclinchable at ĥ−m. By definition
of a millipede game (part 3), we we have xm ∈ Ci(ĥ−m). Thus, xm is the best remaining
payoff at ĥ−m, and is clinchable, and so greedy strategies direct i to clinch xm at ĥ−m, which
contradicts that she receives xW (h) (as in footnote 45, the argument still applies if ĥ−m is a
terminal history).

Case (ii): h′ ⊇ ĥ−m. In this case, xm becomes clinchable after all strictly preferred
payoffs are no longer possible. Thus, again, greedy strategies instruct i to clinch xm, which
contradicts that she is receiving xW (h). ∎

To finish the proof of Lemma A.3, let ĥ =max{h1, h2, . . . , hM} (ordered by ⊂); in words,
ĥ is the earliest history on the path to h̄ at which no payoffs in X0 are possible any longer.
Let x̂ be a payoff in X0 that becomes impossible at ĥ. The claim shows that no x ∈ X0 is
clinchable at any h′ ⊆ ĥ, and so we can further conclude that x̂ is previously unclinchable at

45 If h′ is terminal, then, even though i takes no action at h′, according to our notational convention we
define Ci(h′) = {x1}, which also contradicts that she receives payoff xW (h).
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ĥ. Therefore, by part 3 in the definition of a millipede game, xC(h) ∈ Ci(ĥ). Since xC(h)
is the best possible remaining payoff at ĥ, greedy strategies direct i to clinch xC(h), which
contradicts that she receives xW (h) (as in footnote 45, the argument still applies if ĥ is a
terminal history). ∎

Proof of Lemma A.4. Ashlagi and Gonczarowski (2018) briefly mention this result in
a footnote; here, we provide the straightforward proof for completeness. That every OSP
game is equivalent to an OSP game with perfect information is implied by our more general
Theorem 4. To show that we can furthermore assume that Nature moves at most once, as
the first mover, consider a perfect-information game Γ. Let Hnature be the set of histories h at
which Nature moves in Γ. Consider a modified game Γ′ in which at the empty history Nature
chooses actions from ×h∈HnatureA (h). After each of Nature’s initial moves, we replicate the
original game, except at each history h at which Nature is called to play, we delete Nature’s
move and continue with the subgame corresponding to the action Nature chose from A(h)
at ∅. Again, note that for any agent i and history h at which i is called to act, the support
of possible outcomes at h in Γ′ is a subset of the support of possible outcomes at the
corresponding history in Γ (where the corresponding histories are defined by mapping the
A (h) component of the action taken at ∅ by Nature in Γ′ as an action made by Nature
at h in game Γ). When the support of possible outcomes shrinks, the worst-case outcome
from any fixed strategy can only improve, while the best-case can only diminish, and so
if a strategy was obviously dominant in Γ, the corresponding strategy will continue to be
obviously dominant in Γ′, and the two games will be equivalent. ∎

Proof of Lemma A.5. For any history h, let PnGi(h) = Pi(h) ∖Gi(h) (where “PnG” is
shorthand for ”possible but not guaranteeable”). Now, consider any h at which i moves, and
assume that at h, there are (at least) two such actions a∗1, a∗2 ∈ A(h) as in the statement. We
first claim that PnGi(h) ∩ Pi(h∗1) ∩ Pi(h∗2) = ∅, where h∗1 = (h, a∗1) and h∗2 = (h, a∗2). Indeed,
if not, then let x be a payoff in this intersection. By pruning, some type ≻i is following
some strategy such that Si(≻i)(h) = a∗1 that results in a payoff of x at some terminal history
h̄ ⊇ (h, a∗1). Note that Top(≻i, Pi(h)) ≠ x, because otherwise a∗1 would not be obviously
dominant for this type (since x ∉ Gi(h) and x ∈ Pi(h∗2)). Thus, let Top(≻i, Pi(h)) = y. Note
that y ∉ Gi(h) (or else it would not be obviously dominant for type ≻i to play a strategy
such that x is a possible payoff). Further, we must have y ∈ Pi(h∗1) and y ∉ Pi(h∗2). To see
the former, note that if y ∉ Pi(h∗1), then a∗1 is not obviously dominant for type ≻i, which
contradicts that Si(≻i)(h) = a∗1; given the former, if y ∈ Pi(h∗2), then once again a∗1 would not
be obviously dominant for type ≻i. Now, again by pruning, there must be some type ≻′i such
that Si(≻′i)(h) = a∗2 that results in payoff x at some terminal history h̄ ⊇ (h, a∗2). By similar
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reasoning as previously, Top(≻′i, Pi(h)) ≠ x, and so Top(≻′i, Pi(h)) = z for some z ∈ Pi(h∗2).
Since y ∉ Pi(h∗2), we have z ≠ y, and we can as above conclude that z ∉ Gi(h). It is without
loss of generality to consider a type ≻′i such that Top(≻′i, Pi(h)∖{z}) = y. Note that, for this
type, no action a ≠ a∗2 can obviously dominate a∗2 (since z ∉ Gi(h)). Further, a∗2 itself is not
obviously dominant for this type, since the worst case from a∗2 is strictly worse than y (since
y ∉ Pi(h∗2) and z ∉ Gi(h)), while y ∈ Pi(h∗1). Therefore, this type has no obviously dominant
action at h, which is a contradiction.

Thus, PnGi(h)∩Pi(h∗1)∩Pi(h∗2) = ∅, which means there must be distinct x, y such that
(i) x, y ∈ PnGi(h) (ii) x ∈ Pi(h∗1) but x ∉ Pi(h∗2) and (iii) y ∈ Pi(h∗2) but y ∉ Pi(h∗1). Next, for
all types of agent i that reach h, it must be that Top(≻i, Pi(h)) ≠ x, y. To see why, assume
there were a type that reaches h such that Top(≻i, Pi(h)) = x. Then, by richness, there is
a type that reaches h such that Top(≻i, Pi(h) ∖ {x}) = y. But, note that this type has no
obviously dominant action at h. An analogous argument applies switching x with y.

Now, by pruning, there is some type that reaches h that plays a strategy such that
Si(≻i)(h) = a∗1 and x is a possible payoff. Let Top(≻i, Pi(h)) = z for this type, where, as just
noted, z ≠ x, y. The fact that Si(≻i)(h) = a∗1 implies that z ∈ Pi(h∗1) and z ∉ Gi(h); if either
of these were false, it would not be obviously dominant for this type to play a strategy such
that Si(≻i)(h) = a∗1 and x is a possible payoff. In other words, z ∈ PnG(h) and z ∈ Pi(h∗1).
Since we just showed that PnGi(h) ∩ Pi(h∗1) ∩ Pi(h∗2) = ∅, we have z ∉ Pi(h∗2). Finally,
consider a type ≻i such that Top(≻i, Pi(h)) = z and Top(≻i, Pi(h) ∖ {z}) = y. Note that this
type has no obviously dominant action at h, which is a contradiction. ∎

Proof of Lemma A.6. Given an OSP mechanism (Γ, SN ), begin by using Lemma A.4
to construct an equivalent OSP game of perfect information in which Nature moves only at
the initial history (if at all). Further, prune this game according to the obviously dominant
strategy profile SN . With slight abuse of notation, we denote this pruned, perfect information
mechanism by (Γ, SN ). Consider some history h of Γ at which the mover is ih = i. By Lemma
A.5, all but at most one action (denoted a∗) in A(h) satisfy Pi((h, a)) ⊆ Gi(h); this means
that any obviously dominant strategy for type ≻i that does not choose a∗ guarantees the
best possible outcome in Pi(h) for type ≻i. Define the set

Si(h) = {Si ∶ Si(h) ≠ a∗ and at all terminal h̄ consistent with Si, i receives the same payoff}.

In words, each Si ∈ Si(h) guarantees a unique payoff for i if she plays strategy Si starting
from history h, no matter what the other agents do.

We create a new game Γ′ that is the same as Γ, except we replace the subgame starting
from history h with a new subgame defined as follows. If there is an action a∗ such that

50



Pi((h, a∗)) /⊆ Gi(h) in the original game (of which there can be at most one), then there is
an analogous action a∗ in the new game, and the subgame following a∗ is exactly the same
as in the original game Γ. Additionally, there are M = ∣Si(h)∣ other actions at h, denoted
a1, . . . , aM . Each am corresponds to one strategy Sm

i ∈ Si(h), and following each am, we
replicate the original game, except that at any future history h′ ⊇ h at which i is called on
to act, all actions (and their subgames) are deleted and replaced with the subgame starting
from the history (h′, a′), where a′ = Sm

i (h′) is the action that i would have played at h′ in
the original game had she followed strategy Sm

i (⋅). In other words, if i’s strategy was to
choose some action a ≠ a∗ at h in the original game, then, in the new game Γ′, we ask agent
i to “choose” not only her current action, but all future actions that she would have chosen
according to Sm

i (⋅) as well. By doing so, we have created a new game in which every action
(except for a∗, if it exists) at h clinches some payoff x, and further, agent i is never called
upon to move again.46

We construct strategies in Γ′ that are the counterparts of strategies from Γ, so that for
all agents j ≠ i, they continue to follow the same action at every history as they did in
the original game, and for i, at history h in the new game, she takes the action am that
is associated with the strategy Sm

i in the original game. By definition if all agents follow
strategies in the new game analogous to the their strategies from the original game, the same
outcome is reached, and so Γ and Γ′ are equivalent under their respective strategy profiles.

We must also show that if a strategy profile is obviously dominant for Γ, this modified
strategy profile is obviously dominant for Γ′. To see why the modified strategy profile is
obviously dominant for i, note that if her obviously dominant action in the original game was
part of a strategy that guarantees some payoff x, she now is able to clinch x immediately,
which is clearly obviously dominant; if her obviously dominant strategy was to follow a
strategy that did not guarantee some payoff x at h, this strategy must have directed i to
follow a∗ at h. However, in Γ′, the subgame following a∗ is unchanged relative to Γ, and
so i is able to perfectly replicate this strategy, which obviously dominates following any
of the clinching actions at h in Γ′. In addition, the game is also obviously strategy-proof
for all j ≠ i because, prior to h, the set of possible payoffs for j is unchanged, while for
any history succeeding h where j is to move, having i make all of her choices earlier in
the game only shrinks the set of possible outcomes for j, in the set inclusion sense. When
the set of possible outcomes shrinks, the best possible payoff from any given strategy only
decreases (according to j’s preferences) and the worst possible payoff only increases, and so,

46More precisely, all of i’s future moves are trivial moves in which she has only one possible action; hence
these histories may further be removed to create an equivalent game in which i is never called on to move
again. Note that this only applies to the actions a ≠ a∗; it is still possible for i to follow a∗ at h and be
called upon to make a non-trivial move again later in the game.
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if a strategy was obviously dominant in the original game, it will continue to be so in the new
game. Repeating this process for every history h, we are left with a new game where, at each
history, there are only clinching actions plus (possibly) one passing action, and further, every
payoff that is guaranteeable at h is also clinchable at h, and i never moves again following a
clinching action. This shows parts (i) and (ii). Part (iii) follows immediately from part (ii),
due to greedy strategies and the pruning principle. ∎

Proof of Lemma A.7. Let h be any earliest history where some agent i moves such
that there is a previously unclinchable payoff z that becomes impossible at h (the case for
terminal histories is dealt with separately below). This means that i moves at some strict
subhistory h′ ⊊ h and the following are true: (a) z ∉ Pi(h); (b) z ∈ Pi(h′) for all h′ ⊊ h such
that ih = i; and (c) z ∉ C⊂i (h). Points (b) and (c) imply that z is possible at every h′ ⊊ h
at which i is called to move, but it is not clinchable at any of them; thus, for any type of
agent i that ranks z first, any obviously dominant strategy has the agent choosing the unique
passing action at all h′ ⊊ h.

We want to show that C⊂i (h) ⊆ Ci(h). Towards a contradiction, assume that C⊂i (h) /⊆
Ci(h), and let x ∈ C⊂i (h) but x ∉ Ci(h). Consider a type ≻i that ranks z first and x second.
By the previous paragraph, this type must be playing some strategy that passes at any
h′ ⊊ h, and so h is on the path of play for type ≻i. Since z ∉ Pi(h) and x ∉ Ci(h), by Lemma
A.6, part (ii), the worst case outcome from this strategy is some y that it is strictly worse
than both z and x according to ≻i. However, we also have x ∈ Ci(h′) for some h′ ⊊ h , and so
the best case outcome from clinching x at h′ is x. This implies that passing is not obviously
dominant, and thus Γ is not OSP, a contradiction.

Last, consider a terminal history h̄. As above, let z be a payoff such that (a), (b), and (c)
hold (replacing h with h̄). Recall that for terminal histories, we define Ci(h̄) = {y}, where
y is the payoff that obtains at h for i. Towards a contradiction, assume that there is some
x ∈ Ci(h′) for some h′ ⊊ h̄ but x ∉ Ci(h̄). Note that (i) z ≠ y, by (a); (ii) z ≠ x, by (c); and
(iii) x ≠ y, since x ∉ Ci(h̄). In other words, x, y, and z are all distinct payoffs for i. Thus,
consider the type ≻i that ranks z first, x second, and y third, followed by all other payoffs.
By (b) and (c), z is possible at every h′′ ⊊ h̄ at which i moves, but is not clinchable at any
such h′′. Thus, any obviously dominant strategy for type ≻i must have agent i passing at
all such histories. This implies that y is possible for this type. However, at h′, i could have
clinched x, and so the strategy is not obviously dominant, a contradiction. ∎
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B.3 Proof of Theorem 6

Before proving the theorem, we first formally define a personal clock auction. Given some
perfect-information game Γ, define outcome functions g as follows: gy(h̄) ⊆ N is the set of
agents who are in the allocation ȳ that obtains at terminal history h̄ (that is, i ∈ gy(h̄) if and
only if ȳi = 1), and gw,i(h̄) ∈ R is the transfer to agent i at h̄. The following definition of a
personal clock auction is adapted from Li (2017b). Note that the game is deterministic, i.e.,
there are no moves by Nature.47

Γ is a personal clock auction if, for every i ∈ N , at every earliest history h∗i at which
i moves, either In-Transfer Falls: there exists a fixed transfer w̄i ∈ R, a going transfer
w̃i ∶ {hi ∶ h∗i ⊆ hi}→ R and a set of “quitting actions” Aq such that

• For all terminal h̄ ⊃ h∗i , either (i) i ∉ gy(h̄) and gw,i(h̄) = w̄i or (ii) i ∈ gy(h̄) and
gw,i(h̄) = inf{w̃i(hi) ∶ h∗i ⊆ hi ⊊ h̄}.

• If h̄ ⊋ (h, a) for some h ∈Hi and a ∈ Aq, then i ∉ gy(h̄).

• Aq ∩A(h∗i ) ≠ ∅

• For all h′i, h′′i ∈ {hi ∈Hi ∶ h∗i ⊆ hi}:

– If h′i ⊊ h′′i , then w̃i(h′i) ≥ w̃i(h′′i )

– If h′i ⊊ h′′i , w̃i(h′i) > w̃i(h′′i ) and there is no h′′′i such that h′i ⊊ h′′′i ⊊ h′′i , then
Aq ∩A(h′′i ) ≠ ∅

– If h′i ⊊ h′′i and w̃i(h′i) > w̃i(h′′i ), then ∣A(h′i) ∖Aq ∣ = 1

– If ∣A(h′i) ∖ Aq ∣ > 1, then there exists a ∈ A(h′i) such that, for all h̄ ⊇ (h′i, a),
i ∈ gy(h̄);48

or, Out-Transfer Falls: as above replacing every instance of “i ∈ gy(h̄)” with “i ∉ gy(h̄)”
and vice-versa.

We now prove Theorem 6. As discussed in the main text, the first part of this theorem
follows from our Corollary 1, Li (2017), and the construction of the one-step simple strategic

47We slightly simplify Definition 15 of Li (2017b) by restricting it to perfect information games: by
Theorem 4, for any personal clock auction that satisfies Definition 15 of Li (2017b), there is an equivalent
mechanism that satisfies the definition we work with. This also applies to the minor correction provided by
Li in a corrigendum available on his website; cf. footnote 48 for further details.

48The corrigendum issued by Li replaces this statement with one that says if there is more than one non-
quitting action at h′i, there is a continuation strategy (rather than an action) that guarantees that i ∈ gy(h̄).
The corrigendum also notes, though, that this change does not expand the set of implementable choice rules,
because for any newly admissible mechanism, there is always an equivalent mechanism satisfying the original
definition in which the agent reports her type at h′i and does not move again. Thus, our notion of equivalence
allows us to work directly with this simpler definition of personal clock auctions.
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collections for each agent that we now present. This construction also proves the second part
of the theorem.

Let Γ be a personal clock auction. We present the construction and argument for in-
transfer falls; the case of out-transfer falls is analogous. Consider any hi ∈Hi and simple-node
set Hi,hi

= {h′ ∈ Hi ∶ hi ⊊ h′′ ⊊ h′ Ô⇒ h′′ ∉ Hi}, and define the strategic plan Si,hi
(h′) at

h′ ∈Hi,hi
as follows:

• If θi + w̃i(hi) > w̄i and A(hi) ∖Aq ≠ ∅:

– [Action at hi] Choose Si,hi
(hi) = a ∈ A(hi)∖Aq; if it further holds that ∣A(hi)∖

Aq ∣ > 1, then choose Si,hi
(hi) = a ∈ A(hi)∖Aq such that i ∈ gy(h̄) for all h̄ ⊇ (hi, a).

– [Actions at next-histories] For h′ ∈ Hi,hi
∖ {hi}, if there exists a ∈ A(h′) ∩Aq,

then Si,hi
(h′) = a for some a ∈ A(h′) ∩Aq. Else, Si,hi

(h′) = a′ for some a′ ∈ A(h′)
such that for all h̄ ⊇ (h, a′), i ∈ gy(h̄).

• Else, choose actions such that Si,hi
(h′) ∈ Aq for all h′ ∈Hi,hi

.

To show that this is a one-step simple strategic collection, first consider hi such that A(hi)∖
Aq = ∅ . Then the only actions available at hi are quitting actions. Thus, the best- and
worst-cases from any action are all w̄i, and one-step dominance holds. Second, consider
θi + w̃i(hi) ≤ w̄i. Then, the worst case from quitting at hi is a payoff of w̄i. Since the going
transfer can only fall, the best case from playing a non-quitting action at hi is at most
θi + w̃i(hi) ≤ w̄i, and so again one-step dominance holds. Third, consider the remaining case
in which θi + w̃i(hi) > w̄i and there exists some a ∈ A(hi) ∖Aq. There are two subcases:

First, if ∣A(hi)∖Aq ∣ = 1, then all other actions at hi are quitting actions, and i’s best case
and worst case payoff from following any such action is w̄i. We must show that the worst
case from the perspective of node hi from following the specified strategic plan gives a weakly
greater payoff than w̄i. For any next-history h′i ∈Hi,hi

at which there is a quitting action (i.e.,
A(h′i)∩Aq ≠ ∅), the worst case from the perspective of hi of following the strategic plan is w̄i.
If there is no quitting action at h′i (i.e., A(h′i) ∩Aq = ∅), then, by construction of a personal
clock auction, we have that (i) w̃i(hi) = w̃i(h′i), and (ii) there exists an a′ ∈ A(h′i) such that,
for all h̄ ⊇ (h′i, a′), we have i ∈ gy(h̄). Further, for any h′′i ⊋ h′i, w̃i(h′′i ) = w̃i(h′i) = w̃i(hi),
and so, for any h̄ ⊇ (h′i, a′), gw,i(h̄) = w̃i(hi). Therefore, the worst case from following the
strategic plan from the perspective of hi conditional on reaching any such h′i is θi + w̃i(hi).
In either case, the worst case from the strategic plan from the perspective of hi is weakly
better than taking any other action at hi.

Second, if ∣A(hi)∖Aq ∣ > 1, then the strategic plan instructs i to follow the action a ∈ A(hi)
such that i ∈ gy(h̄) for all h̄ ⊇ (hi, a); further, by construction of a personal clock auction, at
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any h̄ ⊇ (hi, a), we have gw,i(h̄) = w̃i(hi). Since θi + w̃i(hi) > w̄i, this is strictly preferred to
the payoff from taking any quitting action at hi, and since the going transfer cannot rise, it
is also weakly preferable to taking any other non-quitting action at hi. ∎

B.4 Proof of Lemma for Theorem 7

Proof of Lemma A.8. By way of contradiction, let (Γ, SN ,H) be a millipede mechanism that
satisfies (i)-(iii) at each history but is not monotonic. The failure of monotonicity implies
that there exists an agent i, history h∗ ∈ Hi, history h that follows i’s passing move at h∗

that is either terminal or in Hi and such that i does not move between h∗ and h, and payoffs
x and y such that x ∈ (Pi(h∗) ∖Ci(h∗)) ∖Ci(h) and y ∈ Ci(h∗) ∖Ci(h); in particular, x ≠ y.
Without loss of generality, assume that h∗ is an earliest history at which monotonicity is
violated in this way. This implies that x ∉ Ci(h′) for any h′ ⊆ h∗ such that ih′ = i.49 In
particular, any type ≻i of agent i that ranks payoff x first passes at any h′ ⊆ h∗ at which this
agent moves.

As x, y ∉ Ci(h) by the choice of these payoffs, there is some third payoff z ≠ x, y such that
z ∈ Ci(h). Let ≻i be such that ≻i∶ x, y, z . . . and ≻′i be such that ≻′i∶ x, z, . . .; these types exist
by richness, given that we are in a no-transfer environment. Ranking x first, these types are
passing at all nodes h′ ⊆ h∗ at which they move: Si,h′(≻i)(h′) = Si,h′(≻′i)(h′) = a∗ (h′) where
a∗ (h′) denotes the passing action at h′.

We conclude the indirect argument by showing that none of the following two cases is
possible:

Case y ∉ Pi(h). If also x ∉ Pi(h), then Pi(h) contains some w ≠ x, y. If x ∈ Pi(h), then
x ∉ Ci(h) implies that x ∈ Pi((h, a∗ (h))) and by definition of a passing action, there is some
w ≠ x such that w ∈ Pi((h, a∗)); furthermore w ≠ y because y ∉ Pi(h). In either case, passing
at h∗ might lead to w which is worse for ≻i than y, and i can clinch y at h∗; thus Si,h∗(≻i),
which passes at h∗, is not one-step dominant; a contradiction.

Case y ∈ Pi(h). If z ∈ Pi((h, a∗)) then x, y ∉ Ci(h) implies that the worst case for type
≻i from passing at h∗ is at best z, which is worse than clinching y at h∗. Therefore, the
passing action Si,h∗(≻i) is not one-step dominant at h∗ for ≻i, a contradiction. We may thus
assume that z ∉ Pi((h, a∗)). Because x ∉ Ci(h), the assumptions of Lemma A.6 imply that
x is not guaranteeable at h, and in particular it is not guaranteeable at (h, a∗ (h)). Thus,

49If x ∈ Ci(h′) for some h′, then, by monotonicity, at any next history h′′ ⊋ h′ following a pass where i
moves, either x ∈ Ci(h′′) or Pi(h′) ∖ Ci(h′) ⊆ Ci(h′′). If the latter holds, then at h′′, i has been offered to
clinch everything that is possible for her, and so, by greediness, h is not on-path for any type of agent i, and
we can construct an equivalent game in which monotonicity is not violated at h∗. Therefore, x ∈ Ci(h′′).
Repeating this argument for every history between h′ and h∗ at which i moves delivers that x ∈ Ci(h∗),
which is a contradiction.
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the worst case for type ≻′i from passing at h is strictly worse than z; since z ∈ Ci(h), this
implies that Si,h(≻′i) clinches at h. Thus x ∉ Ci(h) allows us to conclude that x ∉ Pi(h), as
otherwise Si,h(≻′i) could not be clinching at h. Since y ∉ Ci(h) and y ∈ Pi(h), we infer that
y ∈ Pi((h, a∗ (h))). As at least two payoffs are possible following passing and x ∉ Pi(h), there
is some w ≠ x, y that is possible at (h, a∗ (h)) and hence also at h. As x is not possible and
y is not clinchable at h, the worst case for type ≻i from the perspective of node h∗ from
following Si,h∗(≻i) is at best w, which is strictly worse than clinching y at h∗. Thus Si,h∗(≻i)
is not one-step dominant. ∎

B.5 Proof of Lemma 1

Recall that any strongly obviously dominant strategy is greedy. We first note the following
lemmas. To state the lemmas, define P̂i(h) = {x ∈ Pi(h) ∶ ∄y ∈ Pi(h) s.t. y ▷i x} to be the
set of possible payoffs for i at h that are undominated in Pi(h).

Lemma B.1. Let Γ be a pruned SOSP game. If a history h at which agent i moves is
payoff-relevant, then ∣P̂i(h)∣ ≥ 2.

Proof of Lemma B.1. Assume not, and let P̂i(h) = {x}, where x is the unique undom-
inated payoff at h.50 In particular, x ▷i x′ for all x′ ∈ Pi(h), and Top(≻i, Pi(h)) = x for
all types of agent i. Because x is possible at h, there is an action a ∈ A(h) such that
x ∈ Pi((h, a)). Action a does not clinch x; indeed if Pi((h, a)) = {x} then greediness would
imply that only actions clinching x are taken, and in a pruned game h would not be payoff
relevant. Thus, there is another x′ ∈ Pi((h, a)) such that x ≻i x′ for all types of agent i. Let
a′ ≠ a be an action at A(h). If x ∈ Pi((h, a′)), then, analogously as for a, there is some other
x′′ ∈ Pi((h, a′)). It is then easy to check that neither a nor a′ strongly obviously dominates
the other. If x ∉ Pi((h, a′)) then it would not be strongly obviously dominant (SOD, for
shortness) for any type to take action a′, which would contradict the game being pruned. ∎

Lemma B.2. Let (Γ, S) be a pruned SOSP mechanism. Let hi
0 be any earliest history at

which agent i is called to play. Then, ∣P̂i((hi
0, a))∣ ≤ 2 for all a ∈ A(hi

0), with equality for at
most one a ∈ A(hi

0).

Proof of Lemma B.2. Since hi
0 is the first time i is called to move, it is on-path for all

types of agent i. We first show that ∣P̂i((hi
0, a))∣ ≤ 2 for all a ∈ A(hi

0). By way of contradiction
assume that there exists some hi

0 such that ∣P̂i((hi
0, a))∣ ≥ 3. Let x, y, z ∈ P̂i((hi

0, a)) be three
distinct undominated payoffs that are possible following a. As (Γ, S) is pruned, there must

50There must be at least one undominated payoff, since ⊵i is transitive and the number of payoffs is finite.
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be some type, ≻i, for which action a is SOD at hi
0. Possibly by renaming the outcomes,

richness allows us to assume that Top(≻i, Pi(hi
0)) = x and x ≻i y ≻i z. For a to be strongly

obviously dominant, for all other actions a′ ≠ a at h0, the best case outcome for type ≻i
following a′ must be no better than z; in particular, this implies that for all a′ ≠ a and all
w ∈ P̂i((hi

0, a
′)), w ⋭i y. Let a′′ ≠ a be an action at h0. If there is w ∈ P̂i((hi

0, a
′′)) such

that x ⋭i w, then there is a type ≻′i such that Top(≻′i, Pi(hi
0)) = y and y ≻′i w ≻′i x. For

this type, the worst case from a is at best x, while w is possible following a′′ , so a is not
strongly obviously dominant; for any a′ ≠ a, the worst case is strictly worse than y as argued
above, while the best case from a is y, and so no a′ ≠ a is SOD either. Therefore, type ≻′i
has no SOD action, a contradiction showing that no w ∈ P̂i((hi

0, a
′′)) satisfies x ⋭i w. An

analogous argument—with z playing the role of x—shows that no w ∈ P̂i((hi
0, a
′′)) satisfies

z ⋭i w. Thus, for all a′′ and all w ∈ P̂i((hi
0, a
′′)), x ⊵ w and z ⊵ w. As x and z are distinct,

for any type ≻′i, either x ≻′i w or z ≻′i w, and in either case a′′ is not a dominant action for a
type contrary to (Γ, S) being pruned. This contradiction shows that ∣P̂i((hi

0, a))∣ ≤ 2 for all
a ∈ A(hi

0).
Finally, we show that ∣P̂i((hi

0, a))∣ = 2 for at most one a ∈ A(hi
0). Towards a contradiction,

let a and a′ be two actions such that there are two possible undominated payoffs for i following
each, and, for notational purposes, let P̂i((hi

0, a)) = {x, y} and P̂i((hi
0, a
′)) = {w, z}, where,

a priori, it is possible that w, z ∈ {x, y}. As the mechanism is pruned, there is some type ≻i
that selects action a as an SOD action; without loss of generality, let Top(≻i, Pi(hi

0)) = x.
Since y is possible following a, in order for a to be SOD, the best case from any a′ ≠ a must
be no better than y, which implies that w, z ⋭i x, and thus x ≠ w, z. Pruning also implies
that some type ≻′i is selecting action a′′ as an SOD action; without loss of generality, let
Top(≻′i, Pi(hi

0)) = z. Since w is possible following a′′, in order for a′′ to be SOD, the best
case from a must be no better than w for type ≻′i, thus x, y ⋭i z, and so z ≠ x, y. Thus,
we have shown that x, y, z are all distinct, that no outcome in Pi(hi

0)—including z and
y—structurally dominates x, and that y ⋭i z. Richness then implies that there is a type ≻i
such that Top(≻i, Pi(hi

0)) = x and x ≻i z ≻i y. This type has no SOD action: only a can be
SOD because only a makes x possible, but a is not SOD because the worst case from a is at
best y, while the best case from a′ is z. ∎

Continuing with the proof of Lemma 1, assume that there was a path of the game with
two payoff-relevant histories h1 ⊊ h2 for some agent i. It is without loss of generality to
assume that h1 and h2 are the first and second times i is called to play on the path. First,
we claim that there are at least two structurally undominated payoffs at h1, i.e., ∣P̂i(h1)∣ ≥ 2.
To show it by way of contradiction, suppose that P̂i(h1) = {x}, which implies that x▷i x′

for all other x′ ∈ Pi(h1). Then Pi((h1, a)) = {x} for all a ∈ A(h1). Indeed, suppose that
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x′ ≠ x is possible after some action a at h1. Then x,x′ ∈ Pi((h1, a)) because otherwise no
type of i finds a to be SOD, which is impossible as the game is pruned. If x ∈ Pi((h1, a′))
for some action a′ ≠ a at h1, then a is not SOD for any type of i, which again is impossible
as the game is pruned. Thus x ∉ Pi((h1, a′)) and no type of i finds a′ to be SOD, which
yet again is impossible in a pruned game. Thus, no x′ ≠ x is possible after any a ∈ A(h1),
which contradicts that h1 is payoff-relevant. This contradiction shows that P̂i(h1), being
non-empty, has at least two elements.

Let a∗1 be the action such that h2 ⊇ (h1, a∗1). By Lemma B.2, one of the below two cases
would need to obtain, and to conclude the indirect argument we now show that neither of
them obtains.

Case ∣P̂i((h1, a∗1))∣ = 1. Let z be the unique undominated payoff that is possible after
a∗1; z ∈ P̂i(h1) as otherwise no type of i would find a∗1 to be SOD, which is impossible in a
pruned mechanism. Because h2 is payoff-relevant, Lemma B.1 tells us that ∣P̂i(h2)∣ ≥ 2, and
thus z ∉ P̂i(h2) as z weakly structurally dominates all outcomes in Pi(h2) ⊆ Pi((h1, a∗1)). Let
x ≠ z be an outcome in P̂i(h1) and let z′, z′′ ∈ P̂i(h2) be distinct undominated payoffs that
are possible at h2, and consider a type ≻i that ranks the outcomes z ≻i x ≻i z′. For this type,
a∗1 is not SOD at h1 because z′ is possible following a∗1 while x /∈ {z} = P̂i((h1, a∗1)) is possible
following some other action at h1. No action a ≠ a∗1 is SOD for ≻i if z ∉ Pi((h1, a)). Hence
z ∈ Pi((h1, a)) but then a∗1 would not be SOD for any type; impossible as the mechanism is
pruned. This contradiction shows that the present case is impossible.

Case ∣P̂i((h1, a∗1))∣ = 2. Then a∗1 is the unique action with two undominated payoffs
from Lemma B.2; let us label these payoffs x and y. As the game is pruned, there is some
type ≻i for which a∗1 is strongly obviously dominant; in particular the payoff Top(≻i, Pi(h1))
is possible following a∗1 and by renaming payoffs we can set x = Top(≻i, Pi(h1)). For each
action a ≠ a∗1 at h1, Lemma B.2 implies that P̂i((h1, a)) = {wa}, for some payoff wa; action
a∗1 being SOD for type ≻i implies that wa ⋭i x (and in particular wa ≠ x); and a being SOD
for some other type implies that y ⋫i wa. If wa ≠ y then y ⋭i wa, and, given that x and y are
mutually undominated, richness would give us a type ≻ai such that x ≻ai wa ≻ai y, but for this
type neither a∗1 nor a nor any other action a′ at h1 is SOD because as shown above wa′ ≠ x.
We conclude that wa = y for all actions a ≠ a∗1 at h1.

To continue the indirect argument we now show that P̂i(h2) = {x, y}. The set P̂i(h2) has
two elements, by Lemma B.1, because h2 is payoff relevant. Thus, if P̂i(h2) ≠ {x, y} then
there would be some z ≠ x, y such that z ∈ P̂i(h2) ⊆ Pi(h1). As x and y are undominated
at (h1, a∗1) ⊊ h2, richness would give us type ≻2i such that x ≻2i y ≻2i z and for this type a∗1
would not be SOD at h1 because z would be possible following a∗1 while, as shown above, y
would be possible following another action; further, no a ≠ a1 would be SOD at h1 because
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y would be possible following a while x would be possible following a∗1. The lack of an SOD
action is a contradiction showing that P̂i(h2) = {x, y}. Thus any z ∈ Pi(h2) is structurally
dominated by either x or y and for, each type, x or y is the top payoff in Pi(h2). Since
P̂i((h1, a)) = y for all a ≠ a∗1, strong obvious dominance implies that all and only types ≻1i
with x = Top(≻1i , Pi(h1)) select action a∗1 at h1 and hence these are the types for whom
h2 is on path. As y is possible at h2, there is at least one action a∗2 ∈ A(h2) after which
y is possible. As at each history agents have at least two actions, there is another action
a2 ∈ A(h2), and, as the mechanism is pruned, there are two types ≻a

∗
2

i and ≻a2i for which h2

is on path such that ≻a
∗
2

i selects a∗2 and ≻a2i selects a2 at h2. Because we established that x is
possible at h2 and that it is the top possible payoff for both these types, SOSP implies that
x ∈ Pi((h2, a∗2)) and x ∈ Pi((h2, a2)). By construction, y ∈ Pi((h2, a∗2)), and hence a∗2 is not
SOD for type ≻a

∗
2

i ; a contradiction that concludes the proof of the lemma. ∎

B.6 Proof of Lemma for Theorem 8

Proof of Lemma A.9. By way of contradiction suppose that game Γ′, together with greedy
strategies, is not a sequential choice mechanism. Let h be an earliest history where the
definition of a sequential choice mechanism is violated. As such h is payoff relevant and Γ′

is pruned, Lemma 1 implies that h is a first history at which i moves. Since Γ′ is not a
sequential choice mechanism, there must be some payoff x ∈ Pi(h) that i cannot clinch at
h. We may assume that x is not dominated, i.e., x ∈ P̂i(h); indeed, if all x′ ∈ P̂i(h) were
clinchable at h, then greediness would imply that all dominated actions were pruned in Γ′.
Since x is not clinchable, for any action a ∈ A(h) such that x ∈ Pi((h, a)), there is some
payoff in Pi((h, a)) that is different from x. We fix one such action a.

Case ∣Pi(h)∣ = 2. Let y be the other payoff in Pi(h). If y were clinchable then the
mechanism would satisfy the definition of sequential choice at h. Since we assumed that
the definition is not satisfied at h, neither x nor y is clinchable. Thus, for all a ∈ A(h),
Pi((h, a)) = {x, y}. As x and y are different payoffs, at least one of x ≻i y or y ≻i x holds for
some type at h. Because there are at least two actions in A(h), this type does not have a
strongly obviously dominant (SOD) action at h, which is a contradiction.

Case ∣Pi(h)∣ ≥ 3 and x▷i y for all y ≠ x in Pi((h, a)). There is an action a′ ≠ a at h

and, because x is not clinchable at h, there is some w ≠ x that belongs to Pi((h, a′)). We
have y ⊵i w; indeed, if not, then x being undominated implies that there would exist type ≻i
such that x ≻i w ≻i y, and, taking into account that x is not clinchable at h, this type would
have no SOD action at h. Thus, x▷i y ⊵i w; but this implies that a′ is not SOD for any
type, which contradicts the mechanism being pruned.
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Case ∣Pi(h)∣ ≥ 3 and there exists y ∈ Pi((h, a)) such that x and y do not dominate
each other. By Lemma B.2, for any a′ ≠ a, the set P̂i((h, a′)) is a singleton. We first
claim that for any a′ ≠ a, P̂i((h, a′)) = {y}. Assume not, i.e., there exists some a′ ≠ a and
w′ ≠ y such that P̂i((h, a′)) = {w′}. Then also w′ ≠ x; indeed, if w′ = x then, as x is both
structurally undominated and unclinchable at h, there would be w ∈ Pi((h, a′)) such that
x▷i w, and—with w possible after a′ and x possible after a—no type would find a′ to be
SOD, contrary to pruning. If w′▷ix then no type would find a to be SOD, which contradicts
pruning; we conclude that w′ ⋫i x. In particular, x ∉ Pi((h, a′)). If y▷iw′, then y ∉ Pi((h, a′))
because w′ ∈ P̂i((h, a′)) is undominated at (h, a′). Thus, a′ would not be SOD for any type,
a contradiction to pruning. We conclude that y ⋫i w′. If w′▷iy, then this and the previously
established w′ ⋫i x, gives us the existence of type ≻i such that x ≻i w′ ≻i y. This type has no
SOD action at h, a contradiction to pruning. We conclude that w′ ⋫i y. If x▷iw′, then type
x ≻i w′ ≻i y exists and has no SOD action at h; we conclude that x ⋫i w′. The above four
conclusions imply that x, y,w′ are mutually undominated at h. Thus, there is a type such
that x ≻i w′ ≻i y and this type has no SOD action at h. This final contradiction shows that
P̂i((h, a′)) = {y} for all a′ ≠ a.

We further claim that Pi((h, a′)) = {y} for all a′ ≠ a; indeed, if this were not the case,
then there is some a′ and some w′ ∈ Pi((h, a′)) such that y ▷i w′. As the mechanism is
pruned, some type ≻′i takes action a′; but, the worst case from a′, for all types, is at best w′,
while y is possible following a; thus a′ is not SOD for type ≻′i. This contradiction shows that
Pi((h, a′)) = {y} for all a′ ≠ a.

Finally, let z ≠ x, y be some third payoff that is possible at h. In light of the previous
paragraph, z ∈ Pi((h, a)), and z ∉ Pi((h, a′)) for all other a′ ≠ a. As P̂i(h) = {x, y}, z

dominates neither x nor y, and richness gives us a type such that x ≻i y ≻i z. This type
has no SOD action at h; this contradicts the mechanism being SOSP and established the
theorem.) ∎
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