
The Random Priority Mechanism is Uniquely Simple,
Efficient, and Fair

Marek Pycia and Peter Troyan∗

June 2024

Abstract

Random Priority is a popular mechanism used to allocate a set of objects to a
set of agents without the use of monetary transfers. Random Priority is appealing
because it satisfies desirable efficiency, fairness, and incentive properties. Is it the only
mechanism with these properties? We answer this long-standing open question in the
positive: Random Priority is the unique mechanism that is Pareto efficient, symmetric,
and obviously strategy-proof.

∗Pycia: University of Zurich; Troyan: University of Virginia. This paper subsumes the analysis of Ran-
dom Priority from 2016-2022 drafts of Pycia and Troyan (2023) (initially presented and distributed under
the title “Obvious Dominance and Random Priority”). Due to length concerns, we were asked to shorten
the forthcoming paper after acceptance. As the characterization was essentially independent from the rest
of the paper and took nearly half of its length, we proposed removing the characterization as a way to meet
the length constraints, and the editor agreed to its removal. For their comments, we would like to thank
Itai Ashlagi, Sarah Auster, Eduardo Azevedo, Roland Benabou, Dirk Bergemann, Tilman Börgers, Ernst
Fehr, Dino Gerardi, Ben Golub, Yannai Gonczarowski, Ed Green, Samuel Haefner, Rustamdjan Hakimov,
Stine Helmke, Shaowei Ke, Fuhito Kojima, Simon Lazarus, Jiangtao Li, Shengwu Li, Giorgio Martini, Nel-
son Mesker, Stephen Morris, Nick Netzer, Ryan Oprea, Ran Shorrer, Erling Skancke, Utku Ünver, Roberto
Weber, anonymous referees, the Eco 514 students at Princeton, and the audiences at the 2016 NBER Mar-
ket Design workshop, NEGT’16, NC State, ITAM, NSF/CEME Decentralization, the Econometric Society
Meetings, UBC, the Workshop on Game Theory at NUS, UVa, ASSA, MATCH-UP, EC’19 (the Best Paper
prize), ESSET, Wash U, Maryland, Warsaw Economic Seminars, ISI Delhi, Notre Dame, UCSD, Columbia,
Rochester, Brown, Glasgow, Singapore Management University, Matching in Practice, Essex, European
Meeting on Game Theory, GMU, Richmond Fed, Israel Theory Seminar, USC, Collegio Carlo Alberto, BC,
and Penn State. Pycia gratefully acknowledges the support of the UCLA Department of Economics and the
William S. Dietrich II Economic Theory Center at Princeton. Troyan gratefully acknowledges support from
the Bankard Fund for Political Economy and the Roger Sherman Fellowship at the University of Virginia.

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program grant agreement No 866376.

1



1 Introduction

Consider the problem of allocating n indivisible objects to n agents without the use of mon-
etary transfers. Examples of such problems include assigning school seats to K12 students,
dormitory rooms to college students, tasks to workers, offices to professors, or time slots on
a common machine. A classic and oft-used solution to this problem is the Random Priority
mechanism: an ordering of the agents is drawn uniformly at random, and agents are called,
one-by-one, to select their favorite object from those that were not selected by earlier agents.1

The popularity of Random Priority largely derives from its desirable efficiency, fairness,
and incentive (or simplicity) properties. A long-standing open question is whether any
other mechanism also satisfies such properties, or whether Random Priority is the unique
mechanism to do so. We provide a positive answer by proving that the extensive-form
implementation of Random Priority is the only mechanism that is:

• Pareto efficient: for any preferences of the agents, the final allocation of RP is Pareto
efficient.

• Symmetric: if two agents swap their roles in the mechanism, its outcome is unaffected
(this property is also known as anonymity).

• Obviously strategy-proof (in the sense of Li, 2017): even agents unable to engage in
contingent reasoning have dominant strategies.

The possibility of obviously strategy-proof extensive-form implementation matters even for
designers restricted to static mechanisms. Indeed, obvious strategy-proofness allows such
designers to explain the mechanism in a simple way.2

There is a long history of attempting to answer various conjectures about characteriza-
tions of Random Priority. On the positive side, Liu and Pycia (2011) showed that asymptot-
ically, in large markets, all ordinally efficient, equal treatment, strategy-proof mechanisms
with small agents have the same marginal distributions as RP, while Bogomolnaia and Moulin
(2001) characterized Random Priority for n = 3.3 Also related are Abdulkadiroğlu and Sön-
mez (1998) and Knuth (1996) who showed that Random Priority is equivalent to another

1Random Priority also goes by the name Random Serial Dictatorship, see e.g., Abdulkadiroğlu and
Sönmez (1998).

2For the importance of simple descriptions, see e.g. Bó and Hakimov (2023), Breitmoser and Schweighofer-
Kodritsch (2019), and Gonczarowski et al. (2023).

3The characterizations based on ordinal efficiency cannot be extended to finite markets because Bogomol-
naia and Moulin (2001) showed that there is no ordinally efficient and strategy-proof mechanism satisfying
equal treatment for n ≥ 4. The asymptotic characterization was possible because Random Priority satisfies
ordinal efficiency asymptotically (Che and Kojima, 2010) and, in large markets, ex post and ordinal efficiency
coincide (Liu and Pycia, 2011). Relatedly, for n ≥ 3, Zhou (1990) shows that there is no strategyproof and
ex-ante efficient mechanism that satisfies equal treatments of equals; Random Priority fails ex-ante efficiency

2



mechanism called the core from random endowments, which works by first randomly assign-
ing the objects to the agents and then allowing the agents to trade according to Gale’s Top
Trading Cycles algorithm; they pioneered a bijective approach to equivalence proofs, which
we also partially rely on. This equivalence result has been extended, e.g., by Pathak and
Sethuraman (2011), Carroll (2014), and Pycia (2019).

The above still left open the question of whether these (or closely related) characteri-
zations hold for any finite market size greater than a few objects. The results here have
been in the negative: Erdil (2014) shows that the classic axioms of Pareto efficiency, equal
treatment, and strategyproofness do not characterize RP when the number of agents and
objects are different; Pycia and Troyan (2023) construct a class of counterexamples that are
strongly-obviously strategy-proof (and hence obviously strategy-proof and strategy-proof),
Pareto efficient, and satisfy equal treatments of equals; Basteck and Ehlers (2024) construct
a counterexample mechanism that is strategy-proof, Pareto efficient, satisfies equal treat-
ments of equals, and in which the distributions of individual agent’s outcomes are different
than in Random Priority.

Our result, on the other hand, is a positive characterization in terms of natural axioms
that applies to any finite market size. Further, Random Priority also satisfies stronger
incentive and simplicity properties such as one-step simplicity, and strong obvious strategy-
proofness (Pycia and Troyan, 2023). Thus, our results imply that these stronger incentive and
simplicity requirements impose no limitation on efficient, symmetric, and obviosuly strategy-
proof mechanisms in the house allocation environment. Relying on Pycia (2019), we able to
further show that these stronger requirements do not limit what anonymous statistics are
achievable to designers of Pareto efficient and obviously strategy-proof mechanisms.

Our analysis contains methodological innovations that might be more generally useful.
For instance, in the proof of our main result, we show how to reduce the problem of char-
acterizing symmetric mechanisms to the simpler problem of characterizing mechanisms that
are obtained by uniform randomizations over agents’ roles in a base mechanism, so called
symmetrizations of the base mechanism. In doing so, we generalize Carroll’s (2014) ter-
minology of priority roles in Pápai’s (2000) Hierarchical Exchange mechanisms to general
extensive-form games.

Following on our work, Basteck (2024) provided a second axiomatic characterization of
Random Priority in finite markets relying on efficiency and symmetry, as well as a new axiom
of probabilistic monotonicity that he introduced. Probabilistic monotonicity is an adapted

even asymptotically (see Abdulkadiroğlu et al., 2011, Featherstone and Niederle, 2016, and Miralles, 2008).
Ehlers and Unver (private communication), a Caltech team (Sandomirskiy, private communication), and
Brandt et al. (2023) extended this result to n = 4 (Brandt et al. (2023) also analyze n = 5). Pycia and Ünver
(2015) discuss methodological tools developed in a failed attempt to prove the conjecture.

3



version of Maskin monotonicity.

2 Model: The Allocation Problem and Extensive-Form

Games

2.1 Environment

Let N be a set of agents and X a set of objects, where ∣N ∣ = ∣X ∣. Each agent i ∈ N has
a strict preference relation, ≻i, over the set of objects X , where for any x, y ∈ X , x ≻i y

denotes that object x is strictly preferred to object y. We also refer to ≻i as agent i’s type,
and write x ≿i y to denote that either x ≻i y or x = y. Let P denote the set of possible types,
which consists of all possible strict rankings of the objects. We write ≻N= (≻i)i∈N to denote
a profile of types, one for each agent. A (deterministic) allocation µ ∶ N → X is a bijective
function that assigns each agent i ∈ N to exactly one of the objects. Let M be the set of
deterministic allocations.

2.2 Extensive-form Games

To determine the final allocation that will be implemented, the planner designs an extensive-
form game, Γ. We consider imperfect-information, extensive-form games with perfect recall,
which are defined in the standard way: There is a finite collection of partially ordered his-
tories, H. The notation h′ ⊆ h denotes that h′ is a subhistory of h ∈ H. Terminal histories
are denoted with bars, h̄, and each terminal history h̄ ∈ H is associated with some allocation
in M. At every non-terminal history h ∈ H, one agent, denoted ih, is called to play and
chooses an action from a finite set A(h). We allow for random moves by a non-strategic
agent, Nature, who is not one of the agents in N ; at any history h at which Nature moves, it
selects an action from A(h) according to some predetermined probability distribution. We
write h′ = (h, a) to denote the history that is reached by starting at h, and following the
action a ∈ A(h). To avoid trivialities, we assume that no agent moves twice in a row, and
that ∣A(h)∣ > 1 for all non-terminal h ∈ H. The set of histories at which an agent i (either in
N or Nature) moves is denoted Hi = {h ∈ H ∶ ih = i}.

To capture imperfect information, Hi is partitioned into information sets, denoted Ii.
For any information set I ∈ Ii and h,h′ ∈ I and any subhistories ĥ ⊆ h and ĥ′ ⊆ h′ at which
i moves, at least one of the following two symmetric conditions obtains: either (i) there is
a history ĥ∗ ⊆ ĥ such that ĥ∗ and ĥ′ are in the same information set, A(ĥ∗) = A(ĥ′), and i
chooses the same action at ĥ∗ and ĥ′, or (ii) there is a history ĥ∗ ⊆ ĥ′ such that ĥ∗ and ĥ are

4



in the same information set, A(ĥ∗) = A(ĥ), and i chooses the same action at ĥ∗ and ĥ. We
denote by I(h) ∈ Ii the information set containing history h. Given two information sets I1

and I2, if there exists h1 ∈ I1 and h2 ∈ I2 such that h1 ⊆ h2, then we write I1 ≤ I2, and say
that I1 precedes I2, and that I2 is a continuation of I1. With slight abuse of notation, we
use A(I) to denote the actions available at information set I. An object x ∈ X is possible
for i at information set I if there is some h ∈ I and some terminal history h̄ ⊇ h such that at
the allocation associated with h̄, µ(i) = x.

2.3 Strategies, Mechanisms, and Equivalence

A strategy Si (≻i) for type ≻i of agent i specifies an action for each information set,
Si (≻i) (Ii) ∈ A (Ii).4 We use S = ((Si(≻i))≻i∈P)i∈N to denote a profile of strategies. To
avoid notational clutter, when the context is clear, we suppress the type-dependence of a
strategy, and write Si(Ii) for the action chosen by agent i at Ii. A mechanism (Γ, S) is
an extensive-form game Γ together with a profile of strategies, S. Any mechanism induces
a lottery over terminal histories, and thus, allocations. We say that two mechanisms (Γ, S)

and (Γ′, S′) are equivalent if, for every profile of types ≻N , the distribution over allocations
when agents follow S in Γ is the same as that when agents follow S′ in Γ′. Every mecha-
nism induces a mapping from type profiles to (random) allocations, which we call the social
choice rule. If two mechanisms are equivalent, they implement the same social choice rule.

3 Random Priority and Its Properties

The Random Priority mechanism works as follows. Nature begins by first selecting an
ordering of the agents uniformly at random from all possible agent orderings. Agents then
move one at a time in this order, and each agent is given the opportunity to choose an
object from a menu of all objects that are still available (i.e., that were not chosen by prior
agents). At the end of the game, each agent is assigned to exactly one unique object, which
determines the final allocation.

The Random Priority mechanism has desirable simplicity, efficiency, and fairness proper-
ties. For simplicity, Li (2017) shows that RP is obviously strategy-proof. Pycia and Troyan
(2023) show that it satisfies the even stronger simplicity standards of one-step simplicity
(OSS) and strong obvious strategy-proofness (SOSP). A strategy Si(≻i) is obviously dom-
inant for player i (of type ≻i) in game Γ if for each on-path information set I∗ ∈ Ii, the worst

4We restrict attention to pure strategies. Allowing for mixed strategies would not change any of our
results.

5



possible outcome for i according to ≻i in the continuation game assuming i follows Si(I) at
all I ≥ I∗ is weakly preferred by i to the best possible outcome for i in the continuation game
if i plays some other action a′ ≠ Si(I∗).5 If there exists a profile of strategies S such that
Si(≻i) is obviously dominant in Γ for all i and all ≻i, then (Γ, S) is said to be obviously
strategy-proof (OSP). Random Priority satisfies this criterion as at an agent’s turn, she
is able to select from all remaining possible objects. Thus, the worst-case (and in fact, only)
outcome from selecting her most preferred remaining object is getting this object, which is
clearly at least as good as (and in fact strictly better than) selecting anything else.

Pareto efficiency and fairness of RP have been recognized at least since Abdulkadiroğlu
and Sönmez (1998). We say that a deterministic allocation is Pareto efficient if, given a
type profile ≻N , no other allocation is weakly preferred by all agents, and strictly preferred
by at least one; similarly, a mechanism (Γ, S) is ex post Pareto efficient (Pareto efficient
for brevity) if it leads to a Pareto-efficient allocation for all Nature’s choices and agents’
types. Random Priority clearly satisfies this property: since each agent selects her most
preferred remaining object at her turn, the only way to make an agent strictly better off is
to give her an object that was taken by an earlier agent. But then this agent must be given
an object taken by an even earlier agent, and so on. Eventually, one of these agents will be
unable to be made better off, and so RP is Pareto efficient.

We use a standard fairness criterion of symmetry: the mechanism treats agents equally
in the sense that it would not change if any two agents i and j were to switch roles.6 More
formally, a mechanism (Γ, S) is symmetric if, for any two agents i, j ∈ N , the outcome
distribution of the mechanism does not change when we transpose the types of agents i and
j and at the same time transpose the objects the agents obtain. For instance, symmetry fails
in a deterministic serial dictatorship in which i chooses first and j chooses second: if they
have the same most preferred object x ∈ X , then i obtains x in the original serial dictatorship;
after transposing the types of i and j, i still obtains x, but after also transposing the received
objects, i no longer obtains x, and so the mechanism is not symmetric. Random Priority,
on the other hand, gives each ordering of the agents the same probability, and so in effect,
the probability i obtains the preferred object is the same before and after the transposition.

5Given a strategy Si for i, an information set I∗ ∈ Ii is on-path if there exist strategies for the other
players j ≠ i and Nature such that I∗ is on the path of play when i plays Si and all other agents follow their
respective strategies. Li (2017) presents the definition of obvious dominance in a slightly different way, using
the notion of earliest points of departure. The two formulations are equivalent.

6In Appendix A, we define the concept of roles, which make this informal definition formal and equivalent
to the in-text definition. Because any permutation can be decomposed into a composition of transpositions,
we can equivalently state the symmetry property as σ−1 ○ (Γ, S) ○σ = (Γ, S) for all permutations σ ∶ N → N .

6



4 The Main Result

Random Priority succeeds on three important design dimensions: it is obviously strate-
gyproof, Pareto efficient, and symmetric. However, this is only a partial explanation of its
success, as to now, it has remained unknown whether there exist other such mechanisms,
and, if so, what explains the relative popularity of RP over these alternatives. Our main
result, Theorem 1 provides an answer to this question: not only does Random Priority have
good efficiency, fairness, and simplicity properties, it is the only mechanism that does so,
thus explaining the widespread popularity of Random Priority in practice.

Theorem 1. (Random Priority). An obviously strategy-proof mechanism is symmetric
and Pareto efficient if and only if it is equivalent to Random Priority.

The proof of Theorem 1 can be found in the appendix. Here, we present a simple 3 agent,
3 object example that allows us to illustrate the methods used in the proof.7 Consider the
game presented in Figure 1.8 The game allocates three objects x, y, and z to three agents.
Agent i1 moves first and can take one of the objects x or y (and leave the game), or can
pass (and remain in the game). If i1 passes, agent i2 can either take y (in which case the
allocation is fully determined: i1 receives z and i3 receives x) or pass. Agent i3 only moves
following two passes, and at this point, i3 can take any object. If i3 takes x or y, then the
allocation is determined, and if agent i3 takes z then i1 can choose between x and y. It can
be checked that this game is both OSP and Pareto efficient.

The game in Figure 1 is not symmetric. For instance, consider the preference profile
≻N= (≻i1 ,≻i2 ,≻i3) defined by

≻i1 ∶x, y, z

≻i2 ∶x, y, z

≻i3 ∶z, y, x.

Under this profile, the outcome of the mechanism is {(i1, x), (i2, y), (i3, z)}. If we transpose
the preferences of i1 and i2 while at the same time transposing the objects agents i1 and

7For ∣N ∣ = 1, Theorem 1 follows from Pareto efficiency. For ∣N ∣ = 2, the equivalence is implied by Pareto
efficiency when agents rank objects differently and it is implied by symmetry when they rank objects in the
same way. Cf. Bogomolnaia and Moulin (2001) who also analyze the three-agent case; their approach is
different and, because of its reliance on ordinal efficiency, not applicable beyond three agents.

8Figure 1 is taken from Pycia and Troyan (2023), who use it as an illustration of a “millipede mechanism”,
which is a class of mechanisms that have a clinch-or-pass structure as in this figure. They show that any
OSP mechanism is equivalent to a millipede mechanism. We provide further details on millipede mechanisms
in Step 2 of the proof in Appendix B.

7



i1

x y

pass i2

y

pass

i1 → z
i3 → x

i3

x y z

i1 → z
i2 → y

i1 → z
i2 → x

i1

x y

i2 → y i2 → x

i2

y z

i3 → z i3 → y

i2

x z

i3 → z i3 → x

1

Figure 1: An OSP and Pareto-efficient game Γ with three agents and three objects.

i2 receive, the outcome is {(i1, y), (i2, x), (i3, z)}, and thus symmetry fails. However, the
mechanism can be symmetrized as follows. Let (Γ∗, S∗) be the mechanism shown in Figure
2. Game Γ∗ begins with a move by Nature, drawing a permutation of players σ uniformly
at random; we refer to such permutations σ as role assignments. The continuation game
Γσ is isomorphic to Γ (from Figure 1) with the agents permuted.9 For instance, if in the
first step Nature draws the role assignment σ1(i1) = i1, σ1(i2) = i2, and σ1(i3) = i3, then
the agents continue by playing precisely the game in Figure 1; if instead Nature draws
the role assignment σ2(i1) = i2, σ2(i2) = i1, and σ2(i3) = i3, then the agents continue by
playing the game Figure 1 except with the roles of i1 and i2 swapped. Similarly to how
randomizing over deterministic serial dictatorships (which are not symmetric) produces the
symmetric Random Priority mechanism, randomizing over role assignments in Γ produces
the symmetric mechanism (Γ∗, S∗).

The first step in the proof shows that it is sufficient to prove Theorem 1 for symmetriza-
tions.

Proposition 1. Suppose that, for every deterministic OSP and Pareto-efficient perfect-
information mechanism, its symmetrization is equivalent to Random Priority. Then, every
symmetric, OSP and Pareto-efficient mechanism is equivalent to Random Priority.

Proposition 1 illustrates a general insight: establishing a property for symmetrizations
of mechanisms from a class C is sufficient to infer that this property holds for all symmetric
mechanisms whenever symmetric mechanisms are in C.10

By Proposition 1, it is sufficient to show that the symmetrization of every OSP and
Pareto efficient mechanism is equivalent to Random Priority. In our example, we take the

9We present the definition of role assignments more formally in Appendix A.
10Proposition 1 is less general but stronger in that class C consists of deterministic OSP and Pareto-efficient

perfect-information mechanisms and does not include symmetric mechanisms.

8



Nature

Γ1

σ1

Γ2

σ2

Γ3

σ3

Γ4

σ4

Γ5

σ5

Γ6

σ6

1

r1

x y

pass r2

y

pass

r1 → z
r3 → x

r3

x y z

r1 → z
r2 → y

r1 → z
r2 → x

r1

x y

r2 → y r2 → x

r2

y z

r3 → z r3 → y

r2

x z

r3 → z r3 → x

1

Figure 2: The top panel shows the symmetrization of the mechanism from Figure 1. The
mechanism begins with Nature drawing a role assignment function σk uniformly at random.
Then, the agents proceed to play the continuation game shown in the bottom panel with
the agents assigned to roles according to the just-drawn role assignment. Each continuation
game (Γ1, . . . ,Γ6) is OSP and Pareto efficient. The grand mechanism (including the draw of
the role assignment function, shown in the top panel) is OSP, Pareto efficient, and symmetric.

OSP and Pareto efficient mechanism (Γ, S) in Figure 1 and construct its symmetrization
as in Figure 2. Then, we construct a mapping f ∶ Σ → Ord between role assignment func-
tions and serial dictatorship orderings such that (i) for each σ ∈ Σ, the outcome of the
continuation game (Γσ, Sσ) is the same as a serial dictatorship in which agents choose in
the order fσ(1), fσ(2), fσ(3) and (ii) f is a bijection.11 Since the symmetrized mechanism
uniformly randomizes over role assignment functions, the probability of achieving any par-
ticular allocation µ is just the number of role assignment functions such that (Γσ, Sσ) results
in allocation µ, divided by N !. Similarly, because Random Priority uniformly randomizes
over serial dictatorship orderings, the probability of achieving any particular allocation µ

is just the number of serial dictatorship orderings that result in µ divided by N !. If there
exists a bijection as just described, these two numbers will be equal for any µ, and hence,
the distribution over allocations in the symmetrized mechanism is the same as in Random
Priority, i.e., the two mechanisms are equivalent.12

The bulk of the proof is devoted to constructing the bijection f and showing that it is
11fσ is an ordering of all of the agents in N , and fσ(j) is the jth agent in this order.
12The bijection idea was first employed by Abdulkadiroğlu and Sönmez (1998) and Knuth (1996), and has

since been used by others (e.g., Pathak and Sethuraman (2011) and Carroll (2014)). Our construction is
different from the bijections in the earlier literature, and relies on the properties of millipede games established
in Pycia and Troyan (2023), and on the properties of Pareto-efficient OSP mechanisms subsequently obtained
by Bade and Gonczarowski (2017).

9



indeed a bijection. For sake of illustration, consider the preference profile ≻N given above.13

Consider a role assignment function such that σ(ik) = ik for k = 1,2,3. Under this role
assignment, the game among the agents is that shown Figure 1, and the resulting play is as
follows: agent i1 moves first and clinches x, agent i2 moves second and clinches y; agent i3
receives z without being called to move. In this case, our bijection f maps σ to the following
serial dictatorship ordering: fσ(1) = i1, fσ(2) = i2, fσ(3) = i3.

Both (Γσ, Sσ) and a serial dictatorship with agent ordering fσ result in the same outcome:
{(i1, x), (i2, y), (i3, z)}. If instead Nature draws the permutation σ′(i1) = i2, σ′(i2) = i1,
σ′(i3) = i3, then the game path of (Γσ′ , Sσ′) has agents i2, i1, and i3 clinching x, y, and z

(in this order). The associated serial dictatorship in this case is fσ′(1) = i2, fσ′(2) = i1,

fσ′(3) = i3. Once again, it can be checked that both (Γσ′ , Sσ′) and a serial dictatorship
under agent ordering fσ′ result in the same final allocation: {(i1, y), (i2, x), (i3, z)}. Indeed,
as we show below, any time the game Γσ starts with several agents choosing clinching moves,
then we map it to a serial dictatorship that starts with the same agents moving in the same
order, and it is easy to see that these two mechanisms always result in the same allocation.

The mapping of game paths that involve passing is more subtle. In the present example,
passing is on the game path if the role of i1 is assigned to agent i3. There are two such
permutations: if σ′′ (i2) = i2 then the resulting outcome is {(i1, x) , (i2, y) , (i3, z)}, and if
σ′′′(i2) = i1, then the resulting outcome is {(i1, y) , (i2, x) , (i3, z)}. To what serial dictator-
ships should we map these two permutations? In this simple example, it can be checked
by hand that the unique mapping achieving a bijection that results in the same allocations
under all of the corresponding serial dictatorships maps σ′′ into a serial dictatorship with
agents ordered i3, i1, i2, and maps σ′′′ to a dictatorship with agents ordered i3, i2, i1. There
is no simple rule of thumb in mapping role assignment functions that entail passing on the
path of play: notice that in the present example, the resulting serial dictatorships do not
order agents in the order in which they move in Γσ, nor do they order agents in the order in
which they take their objects. The bulk proof in the appendix is devoted to constructing the
bijection for any game, and gives the details of how agents should be ordered when passing
is on the path of play.

13The bijection is constructed for a fixed preference profile. Different preference profiles will lead to different
bijections, but we still have the outcome distributions for the two mechanisms the same profile-by-profile,
and thus the mechanisms are equivalent.

10



5 An Application to Simplicity Tradeoffs

In addition to providing an explanation for the popularity of Random Priority, our Theorem
1 has implications for how restrictive various simplicity standards are in the allocation envi-
ronment we study. It shows that Random Priority, a very simple mechanism, is equivalent to
all other obviously strategy-proof, efficient, and symmetric mechanisms. These mechanisms
can vary in their simplicity and Pycia and Troyan (2023) introduced a gradated class of
simplicity criteria (that includes one-step simplicity and strong obvious strategy-proofness)
that differentiate among these various mechanisms. Theorem 1 tells us that imposing the
more restrictive criteria does not restrict the designer’s ability to implement efficient and
symmetric objectives:

Corollary 1. For Pareto efficient and symmetric mechanisms, obvious strategy-proofness,
one-step simplicity, and strong obvious strategy-proofness are equivalent.

Our Theorem 1 also allows us also to conclude that one-step simplicity and strong obvious
strategy-proofness do not limit the means and medians of statistical outcomes that designers
of obviously strategy-proof and efficient mechanisms can achieve, whether these mechanisms
are symmetric or not. We formalize and derive this conclusion relying on the approach
developed in Pycia (2019). Let us fix a set of classifications K = {1, ..., k} and a mapping
f ∶ P×X →K that allows us to classify agents’ outcomes. A statistic F ∶ (Θ ×A)i∈N → [0,1]

K

is an empirical distribution of the classifications of individual agents’ outcomes.14 Examples
include: the ratio of applicants obtaining their top outcome; the ratio of applicants obtaining
their two top outcomes; the ratio of applicants assigned objects from some fixed subset; or
the ratio of applicants who prefer the object they are assigned to some reference object x. A
distribution over PN is exchangeable if the probability of ≻N is the same as the probability
of the profile ≻ σ(N) for any permutation of agents σ ∶ N → N . Our Theorem 1 and Lemma
1 from Pycia (2019) imply the following:

Corollary 2. For any Pareto efficient and obviously strategy-proof mechanism, the mean
(and median) of any statistic F with respect to any exchangeable distribution over PN is the
same as the mean (and median) of F under Random Priority.

This result contributes to the burgeoning literature on the costs of strategic simplicity.
For instance, Miralles (2008), Abdulkadiroğlu et al. (2011), and Featherstone and Niederle
(2016) discuss the costs of strategy-proofness, and and Li (2017), Pycia and Troyan (2023),
and Li and Dworczak (2024) discuss the costs of obvious strategy-proofness and strong

14Pycia (2019) calls such statistics anonymous.

11



obvious strategy-proofness. While these papers illustrate the costs of strategic simplicity,
our Corollaries 1 and 2 show that in the single-unit demand allocation problem we study
farther simplifications beyond obvious strategy-proofness come at no cost.

6 Conclusion

We have resolved in the positive the long standing conjecture about Random Priority: it
is the unique mechanism satisfying desirable incentive, efficiency, and fairness properties.
This characterization provides an explanation for the popularity of Random Priority. This
characterization also implies that imposing more restrictive simplicity standards than obvious
strategy-proofness—e.g., one-step simplicity or strong obvious strategy-proofness—comes at
no cost in the context of efficient and fair allocation. The duality lemma of Pycia (2019)
allows us to conclude that from normative perspective, imposing these stronger simplicity
standards is also without cost in the context of efficient allocation.

References

Abdulkadiroğlu, A., Y.-K. Che, and Y. Yasuda (2011): “Resolving conflicting preferences in
school choice: The “Boston mechanism” reconsidered,” American Economic Review, 101, 399–410.

Abdulkadiroğlu, A. and T. Sönmez (1998): “Random Serial Dictatorship and the Core from
Random Endowments in House Allocation Problems,” Econometrica, 66, 689–701.

Ashlagi, I. and Y. A. Gonczarowski (2018): “Stable matching mechanisms are not obviously
strategy-proof,” Journal of Economic Theory, 177, 405–425.

Bade, S. and Y. Gonczarowski (2017): “Gibbard-Satterthwaite Success Stories and Obvious
Strategyproofness,” .

Basteck, C. (2024): “An axiomatization of the random priority rule,” WZB Discussion Paper SP
II 2024-201.

Basteck, C. and L. Ehlers (2024): “On (constrained) efficiency of strategy-proof random as-
signment,” Working Paper.

Bó, I. and R. Hakimov (2023): “Pick-an-object mechanisms,” Management Science.

Bogomolnaia, A. and H. Moulin (2001): “A New Solution to the Random Assignment Prob-
lem,” Journal of Economic Theory, 100, 295–328.

12



Brandt, F., M. Greger, and R. Romen (2023): “Characterizing Random Serial Dictatorship,”
Working Paper.

Breitmoser, Y. and S. Schweighofer-Kodritsch (2019): “Obviousness Around the Clock,”
WZB Discussion Paper SP II 2019–203.

Carroll, G. (2014): “A general equivalence theorem for allocation of indivisible objects,” Journal
of Mathematical Economics, 51, 163–177.

Che, Y.-K. and F. Kojima (2010): “Asymptotic Equivalence of Random Priority and Probabilistic
Serial Mechanisms,” Econometrica, 78, 1625–1672.

Erdil, A. (2014): “Strategy-Proof Stochastic Assignment,” Journal of Economic Theory, 151, 146–
162.

Featherstone, C. R. and M. Niederle (2016): “Boston versus deferred acceptance in an interim
setting: An experimental investigation,” Games and Economic Behavior, 100, 353–375.

Gonczarowski, Y. A., O. Heffetz, and C. Thomas (2023): “Strategyproofness-exposing
mechanism descriptions,” Tech. rep., National Bureau of Economic Research.

Knuth, D. E. (1996): “An exact analysis of stable allocation,” Journal of Algorithms, 20, 431–442.

Li, J. and P. Dworczak (2024): “Are Simple Mechanisms Optimal when Agents are Unsophisti-
cated?” Working Paper.

Li, S. (2017): “Obviously Strategy-Proof Mechanisms,” American Economic Review, 107, 3257–87.

Liu, Q. and M. Pycia (2011): “Ordinal Efficiency, Fairness, and Incentives in Large Markets,” .

Miralles, A. (2008): “School Choice: The Case for the Boston Mechanism,” Boston University,
unpublished mimeo.

Pápai, S. (2000): “Strategyproof Assignment by Hierarchical Exchange,” Econometrica, 68, 1403–
1433.

Pathak, P. A. and J. Sethuraman (2011): “Lotteries in student assignment: An equivalence
result,” Theoretical Economics, 6, 1–17.

Pycia, M. (2019): “Evaluating with Statistics: Which Outcome Measures Differentiate Among
Matching Mechanisms?” Working Paper.

Pycia, M. and P. Troyan (2023): “A Theory of Simplicity in Games and Mechanism Design,”
Econometrica, 91(4), 1495–1526.

13



Pycia, M. and M. U. Ünver (2015): “Decomposing Random Mechanisms,” Journal of Mathe-
matical Economics, 61, 21–33.

Zhou, L. (1990): “On a Conjecture by Gale about One-Sided Matching Problems,” Journal of
Economic Theory, 52, 123–135.

A Roles and Role Assignment Functions

Our terminology of roles and role assignment generalizes Carroll’s (2014) terminology of
priority roles in Pápai (2000)’s hierarchical exchanges to general extensive-form games. In
the definition of our fairness axiom and the proof of the main theorem below, we make use
of the concepts of roles and role assignment functions, which we introduce here. Let R be a
set of players such that ∣R∣ = ∣N ∣; we call each r ∈ R a role. Given any game Γ, we define a
corresponding proto-mechanism, (Γ̃, S̃), which consists of a proto-game, Γ̃, and a profile
of proto-strategies, S̃. The proto-game Γ̃ is equivalent to Γ, except that each history h is
assigned to a particular role r ∈ R (rather than an agent in N ), with the restriction that if
two histories are controlled by the same agent in Γ, then they are controlled by the same role
in Γ̃. Formally, letting ρ ∶ H → R be the function that maps each history h to the role that
moves at h in Γ̃, we require that ρ(h) = ρ(h′) if and only if ih = ih′ in Γ. The proto-strategy
profile S̃ = (S̃r)r∈R is defined such that S̃r = Si, where r is the role that controls the same
histories in Γ̃ that are controlled by agent i in Γ.

Let Σ be the set of bijections σ ∶ R → N between the set of roles and the set of agents
N ; we call these bijections role assignment functions. Given a proto-mechanism (Γ̃, S̃),
each role assignment function σ ∈ Σ determines a mechanism for the agents in N , denoted
(Γσ, Sσ), as follows: Γσ is the extensive-form game with the same game tree as the proto-
game Γ̃, and such that at each non-terminal history h, the agent called to move is σ(ρ(h)); at
each terminal history in Γσ the object assigned to agent i is the same as the object assigned
to role σ−1 (i) in Γ̃; the strategy Si of agent i in Γσ is the same as the strategy of role σ−1 (i)

in (Γ̃, S̃). There are ∣Σ∣ = N ! possible mechanisms (Γσ, Sσ); we call them the permuted
mechanisms. (See Section 4 for an example of how role assignments work.)

Given a mechanism (Γ, S), we further define the symmetrization of (Γ, S), denoted
(Γ∗, S∗), to be the following random mechanism: first, Nature chooses a role assignment
function σ uniformly at random from the set of all possible role assignment functions, and
then, the agents play Γσ with strategies Sσ.15

15While this construction implies that different agents play the same strategies in the same role, our
arguments only rely on the weaker assumption that an agent’s strategy Sσ,i(≻i) depends only on her own

14



B Key Steps of the Proof

We break the proof down into 7 steps. Step 1 shows that it is sufficient to consider sym-
metrized mechanisms. Steps 2 and 3 show that we can further restrict attention to a subset
of the class of millipede mechanisms of Pycia and Troyan (2023). Step 4 constructs a coding
algorithm that maps each of the permuted mechanisms (Γσ, Sσ) that make up the sym-
metrization into a corresponding serial dictatorship. Step 5 shows that the resulting serial
dictatorship produces the same allocation as the (Γσ, Sσ). Step 6 shows that the mapping
is in fact a bijection between permuted mechanisms and serial dictatorship orderings. Step
7 wraps up and concludes. Proofs of some intermediate results not given here can be found
in the Supplementary Appendix.

Step 1: Symmetrization Reduction

The first step in proving Theorem 1 is to recognize that it is sufficient to prove the theorem
for any uniform randomization over Pareto-efficient deterministic mechanisms. It is sufficient
to consider symmetric randomizations over Pareto-efficient deterministic OSP mechanisms
because every symmetric mechanism can be expressed as a lottery over symmetric random-
izations. If each of these randomizations is equivalent to Random Priority, then so is the the
lottery over them. We stated this insight as Proposition 1 above and we prove it now.

Proof of Proposition 1. Take a symmetric, OSP, and Pareto-efficient mechanism
(Γ, S). Lemma A.4 of Pycia and Troyan (2023) shows that for every OSP mechanism, there
is an equivalent OSP mechanism with perfect information in which Nature moves at most
once, as the first mover.16 Thus, it is without loss of generality to assume that (Γ, S) has
perfect information and that Nature moves only at the beginning of the game. Because (Γ, S)

is symmetric, its symmetrization (Γ∗, S∗) is equivalent to (Γ, S). Furthermore, (Γ∗, S∗) is a
lottery over symmetrizations of each deterministic perfect-information continuation game Γ′

after Nature’s move in (Γ, S). The mechanism given by game Γ′, together with the strategy
profile induced from Γ, is OSP and Pareto efficient, and hence by the assumption of the
lemma it is equivalent to Random Priority. Because every lottery over Random Priority
lotteries is still equivalent to Random Priority, the lemma obtains. ∎

In light of the above proposition, it is sufficient to prove Theorem 1 for symmetrizations,

preferences and her role assignment, and not on the roles assigned to other agents. In other words, in any
two subgames ΓA and ΓB following Nature’s selection of role assignments σA and σB , if σ−1A (i) = σ

−1
B (i) = rn,

then SA,i(≻i)(hA) = SB,i(≻i)(hB) for any equivalent histories hA and hB in these two games. As an aside
note that this element of the construction relies on the fact that the strategies are dominant that is that
they remain optimal regardless of strategies played by other agents.

16Ashlagi and Gonczarowski (2018) briefly mention this result in a footnote.

15



i.e., it is sufficient to prove the following.

Proposition 2. Let (Γ, S) be an obviously strategy-proof and Pareto-efficient deterministic
perfect-information mechanism. Then, the symmetrization of (Γ, S) is equivalent to Random
Priority.

Steps 2-6 are devoted to showing Proposition 2, which, combined with Proposition 1,
proves Theorem 1.

Step 2: Millipede Reduction

Let (Γ, S) be an obviously strategyproof and Pareto efficient deterministic perfect-information
mechanism. The first step in the proof of Proposition 2 shows that it is without loss of gen-
erality to assume that (Γ, S) is a millipede mechanism. Millipede mechanisms are a class
of mechanisms introduced in Pycia and Troyan (2023), who show that any, in a broad class
of preference environments that include our setting, any OSP mechanism is equivalent to
a millipede mechanism. Broadly speaking, in our environment, a millipede mechanism is a
perfect-information, extensive-form game such that at each history, one agent is called to
move and is offered the opportunity to clinch some subset of still-available objects (and leave
the game); she may also be offered an opportunity to pass, and hence remain in the game,
waiting for better clinching options in the future.

To formally define a millipede game, we need the following definitions, which are adapted
from Pycia and Troyan (2023).

• Possible objects: Object x is possible for agent i at history h if there is a terminal
history h̄ ⊇ h at which i receives x. We let Pi(h) denote the set of objects that are
possible for i at h. If x ∈ Pi(h′) for all h′ ⊊ h such that ih′ = i, but x ∉ Pi(h), then we
say x becomes impossible for i at h.

• Clinchable objects: Object x has been clinched by agent i at history h if i receives x
at all h̄ ⊇ h. Object x is clinchable for agent i at history h if i moves at h there is
some action a ∈ A(h) such that i has clinched x at h′ = (h, a). We let Ci(h) denote the
set of objects that are clinchable for agent i at h.

• Clinching actions: An action a ∈ A(h) is called a clinching action if agent i (who
moves at h) has clinched x at history h′ = (h, a).

• Passing actions: Any action a ∈ A(h) that is not a clinching action is a passing action.

16



At a terminal history h̄, no agent is called to move and there are no actions. However, it is
notationally convenient to define Ci(h̄) = {x}, where x is the object that i receives at h̄. We
further define the following pieces of notation:

• C⊆i (h) is the set of objects that have been previously clinchable for i at some subhistory
of h; formally, C⊆i (h) = {x ∶ x ∈ Ci(h′) for some h′ ⊆ h s.t. ih′ = i}.

• C⊂i (h) is the set of objects that have been previously clinchable for i at some strict
subhistory of h; formally, C⊂i (h) = {x ∶ x ∈ Ci(h′) for some h′ ⊊ h s.t. ih′ = i}. If
x ∉ C⊂i (h), then we say x is previously unclinchable at h.

Given a mechanism (Γ, S) and a type ≻i, a strategy Si(≻i) a greedy strategy if at any
history h ∈ Hi it satisfies the following: if the ≻i-best still-possible object in Pi(h) is clinchable
at h, then Si(≻i)(h) clinches this payoff object; otherwise, Si(≻i) (h) is a passing action.

With these definitions, a millipede game is a finite extensive-form game of perfect
information that satisfies the following properties:

1. Nature either moves once, at the empty history h∅, or Nature has no moves.

2. At any history at which an agent moves, all but at most one action are clinching
actions, and following any clinching action, the agent does not move again.

3. At all h, if there exists a previously unclinchable payoff x that becomes impossible for
agent ih at h, then C⊂ih(h) ⊆ Cih(h).

A millipede mechanism is a millipede game with a profile of greedy strategies. In
a millipede mechanism, it is obviously dominant for an agent to clinch the best possible
object at h whenever it is clinchable. The last condition of the millipede definition says that
when some previously unclinchable object becomes impossible for an agent, the next time
she moves, she is offered the opportunity to clinch everything that was previously clinchable.
This ensures that an agent never “regrets” her decision to pass on a previously offered object,
and is formally what is needed to guarantee passing at h is obviously dominant when an
agent’s best possible object at h is not clinchable. An example of a millipede mechanism in
a 3 agent, 3 object setting is given in Figure 1.

Lemma 1. (Pycia and Troyan, 2023). Every OSP mechanism is equivalent to a millipede
mechanism.

Using the above result from Pycia and Troyan (2023), it is without loss of generality to
assume in Proposition 2 that (Γ, S) is a millipede mechanism. Thus, to prove Proposition
2 we must show that the symmetrization of any Pareto-efficient millipede mechanism is
equivalent to Random Priority.

17



Step 3: Efficient Millipedes

Obvious strategyproofness allows us to assume that (Γ, S) is a millipede mechanism, by
Lemma 1. Adding Pareto efficiency allows us to further restrict attention to a subclass of
millipede mechanisms that we describe in this step. To describe this class, we must first
introduce the concept of a lurker, which is a modification of a similar concept in Bade and
Gonczarowski’s (2017, hereafter BG) analysis of efficient OSP mechanisms. Informally, a
lurker is an agent who has been offered to clinch all objects that are possible for her except
for one, which she is said to “lurk”.

Let (Γ, S) be a Pareto-efficient millipede mechanism. Call an agent i active at h if she
has been previously called to play at some h′ ⊆ h, and has not yet clinched an object at
h. Let A(h) denote the set of active agents at h. Recall that C⊆i (h) is the objects agent
i has been offered to clinch at some subhistory of h and C⊂i (h) is the objects agent i has
been offered to clinch at some strict subhistory of h. Further, define Gi(h) as the set of
objects that are guaranteeable for i at h; formally, x ∈ Gi(h) if and only if there exists a
continuation strategy Si such that i receives object x at all terminal histories h̄ ⊇ h that are
consistent with i following strategy Si starting from h.17

Consider a history h and an active agent i who has moved at a strict subhistory of h.
Let h′ ⊊ h be the maximal strict subhistory such that ih′ = i. Agent i is said to be a lurker
for object x at h if (i) Pi(h) ≠ Gi(h), (ii) x ∈ Pi(h′), (iii) C⊆i (h′) = Pi(h′) ∖ {x}, and (iv)
x ∉ C⊆j (h′) for any other active j ≠ i that is not a lurker at h′. If some agent i is a lurker
for an object x at a history h, then we say x is a lurked object at h. We use the term
BG lurker to refer to any agent that satisfies (i), (ii), and (iii).18 Bade and Gonczarowski
(2017) show that each BG lurker lurks only one object, each BG-lurked object has only one
BG lurker, and at any history, at most two active agents are not BG lurkers. Lemmas 9 and
10 in the Supplementary Appendix show that the same continues to hold for our definition
of lurkers.

17Note the distinction between guaranteeble objects, Gi(h), and clinchable objects, Ci(h): informally,
an object x is clinchable at h if there is action a ∈ A(h) such that i receives x “immediately” (and so no
other objects are possible for i following action a), whereas if x is guaranteeable at h, there may be other
objects that are possible, but there is some continuation strategy such that if i sticks to this strategy in the
continuation game, she can guarantee she will receive x, no matter what the other agents do. The concepts
of active agents and guaranteeable objects were introduced in Pycia and Troyan (2023).

18BG lurkers were studied in Bade and Gonczarowski (2017), and we keep the term lurker for the redefined
concept as an acknowledgment of their work. Because we impose condition (iv), our definition of a lurker is
more restrictive than their Definition E.9: all lurkers in our sense are BG lurkers, but the converse need not
hold. On the other hand, our definition of a non-lurker is more permissive: a non-lurker in our usage may not
be a BG non-lurker. We include (iv) in the definition of a lurker because it is needed in the construction of
our coding algorithm in Step 4 that maps role assignment functions to agent orderings; our coding algorithm
treats BG lurkers who do not satisfy (iv) the same as other non-lurkers and differently from how it treats
lurkers.

18



At any h, we partition the set of active agents as A(h) = L(h) ∪ L̄(h). The set L(h) =
{`h1 , . . . , `

h
λ(h)} is the set of lurkers and L̄(h) is the set of active non-lurkers, where λ(h) =

∣L(h)∣ denotes the number of lurkers at h. Let X(h) denote the set of still-available (un-
clinched) objects at h, and partition this set as X(h) = X L(h) ∪ X̄ L(h), where X L(h) =

{xh1 , . . . , x
h
λ(h)} is the set of lurked objects and X̄ L(h) = X(h) ∖ X L(h) is the set of unlurked

objects at h. We order the sets so that agent `hm lurks objects xhm, and if m′ <m, then lurker
`hm′ is older than lurker `hm, in the sense that `hm′ first became a lurker for xhm′ at a strict
subhistory of the history at which `hm became a lurker for xhm; we also say that lurker `hm is
younger than lurker `hm′ . We use the same older and younger comparisons for BG lurkers.

As agents continue to take successive passing actions, the set of lurkers and the set of
lurked objects continue to grow, until eventually, we reach a history h where some agent i
clinches some object x.19 By Lemma 13 in the Supplementary Appendix, any agent i who
moves at a history h whose immediately preceding action is a passing action is not a lurker.
When i clinches at h, this allows us to determine the assignments of all lurkers as follows:

• If x ∈ X̄ L(h), each lurker `hm ∈ L(h) receives her lurked object, xhm.

• If x = xhm1
for some lurked xhm1

∈ X L(h), then all older lurkers `hm′ for m′ < m1 receive
their lurked objects xhm′ ; lurker `hm1

, whose lurked object is assigned to i, receives her
favorite object from the remaining set of unclinched objects, X(h) ∖ {xh1 , . . . , x

h
m1

}.

– If `hm1
is assigned an unlurked object, then all remaining lurkers get their lurked

objects; if `hm1
is assigned a lurked object xhm2

for some m2 > m1, then all older
unmatched lurkers (`hm′ for m1 <m′ <m2) receive their lurked objects. Lurker `hm2

gets his favorite object from X(h) ∖ {xh1 , . . . , x
h
m2

}.

– This process is repeated until some lurker `hm̄ receives an unlurked object, at which
point all remaining unassigned lurkers are assigned their lurked objects.

These assignments are implied by Lemma E.17 in Bade and Gonczarowski (2017) (who show
that it is valid under the definition of BG lurkers) and by our Lemma 7, which shows that,
at any history, there is at most one BG lurker who is not a lurker and it is the youngest BG
lurker. Notice that in the above structure of assignments, there is a unique active agent j
who is assigned an unlurked object y; this agent might be the agent i who started the chain
of assignments by clinching, or one of the lurkers. Lemmas 10 and 13 in the Supplementary
Appendix imply that there might be at most one additional active agent, j′, who is neither

19It is immediate that lurker conditions (i)-(iii) continue to hold at each history reached by passing from
the history at which agent i became a lurker. That (iv) continues to hold follows from Lemma 12 in the
appendix.

19



i nor one of the lurkers. If such a j′ exists and y ∈ C⊆j′ (h) then j′ receives her favorite object
that was neither assigned prior to h nor to other active agents at h.20

Now, the above structure of assignments and the millipede reduction theorem of Pycia
and Troyan (2023) from Step 2 allows us to assume that our base game Γ is a millipede game
that has the following properties:21

1. At each history h, there is at most one passing action in A(h); this action, if it exists, is
denoted a∗ ∈ A(h). With slight abuse of notation, when the context is clear, we use the
symbol a∗ to represent the unique passing action at any history h (if such an action

exists), and write h′ = (h,

n times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
a∗, . . . , a∗) to denote that history h′ is the superhistory of h

that is reached by starting at h and following n passing actions in a row; since there is
at most one passing action at any given history, h′ is uniquely defined.

2. If i moves at h and x ∈ Gi(h), then there exists a clinching action ax ∈ A(h) that clinches
x for i.

3. If i is the unique active agent for whom Pi(h) = Gi(h), then i moves at h.

4. If i moves at h and Pi(h) = Gi(h), then Ci(h) = Pi(h), there there is no passing action
at h, and i is not called to move at any h′ ⊋ h.

5. Following any clinching action a′ ∈ A(h) at a history h, any lurker at h who is assigned
to their lurked object never moves after h, and hence become inactive. Further, at
h′ = (h, a′):

(a) If there are agents who were lurkers at h and are not assigned to their lurked
objects, then the oldest such lurker moves at h′. This lurker is offered for clinching
all objects that have not been assigned prior to the move (there is no passing
action).

(b) Otherwise, if there exists an agent j′ who was active at h and has not yet been
assigned an object at h′, then j′ moves at h′ and:22

20Let y′ be the top choice for j′ among objects that were neither assigned prior to h nor to other active
agents at h. Then j′ can at best receive y′. As there is a preference profile of other agents at which they
rank y′ lowest, making y′ impossible for j′ would violate Pareto efficiency. Thus y′ is possible for j′. At the
same time, the payoff guarantee properties of a millipede imply that j′ is offered for clinching all objects
that were possible but not clinchable for her when j′ passed on y. Thus, the footnoted claim follows.

21Property 1 is the basic structure of millipedes presented in step 2; we restate it in order to introduce the
a∗ notation. That, without loss of generality, we can assume properties 2 and 3 is established in the proof
of the millipede theorem of Pycia and Troyan (2023). We can assume property 4 because by property 2 and
greedy strategies, any passing move at h can be pruned in the manner of Li (2017)’s Pruning Principle for
OSP games.

22Note that there can be at most one such agent j′, and they are not a lurker.

20



(i) If the object y that was clinched at h has been previously offered to j′ (i.e.,
y ∈ C⊆j′(h)), then j′ is offered to clinch all remaining unassigned objects.23

(ii) If the object y that was clinched at h has not been previously offered to j′

(i.e., y ∉ C⊆j′(h)), then j′ is offered to clinch at least all objects in C⊆j′(h); she
may also have other clinching moves and/or a passing move.24

(c) If neither 5(a) nor 5(b) hold, then all agents who were active at h have been
assigned. If there remain unassigned agents, then one of these agents moves at
h′ and a continuation game begins among the remaining unassigned agents and
objets. Otherwise, the game ends.

For completeness, we summarize the above discussion in the following lemma.

Lemma 2. Every OSP and Pareto efficient mechanism (Γ, S) is equivalent to a millipede
mechanism satisfying properties 1-5.

Remark 1 (Recursive structure). Property 5 guarantees that the games we study have a
recursive structure: at the first clinching following a (possibly empty) sequence of passes,
lurkers are assigned, in order of age, their best possible remaining object. When no further
lurkers remain, there may be one remaining active agent, j′. The next move starts a con-
tinuation game that is just a smaller Pareto-efficient millipede game among j′ and all of the
remaining unmatched agents and objects. This continuation game has the same structure
described above, and property 5(b) guarantees that j′ moves first in this continuation game,
and is able to clinch at least the set of objects she could have clinched up until this point in
the game (and possibly more).

Step 4: Coding Algorithm

By Lemma 2, we may assume that the mechanism (Γ, S) in Proposition 2 is a millipede
mechanism satisfying properties 1-5. At the core of the remainder of the proof of Proposition
2 is the construction of a bijection between role assignment functions for the permuted
millipede mechanisms that make up the symmetrization of (Γ, S) and serial dictatorship
orderings such that the outcomes of the permuted millipede and permuted serial dictatorship
are exactly the same. More formally, let Ord denote the set of total linear orders over the set
of agents N . Random Priority draws an agent ordering uniformly at random from Ord, and

23See footnote 20.
24By definition, j′ is not a lurker, and so Lemma 12 in the Supplementary Appendix implies that her set

of previously clinchable objects C⊆j′(h) cannot contain any lurked objects. Since in this case we assume that
y ∉ C⊆j′(h), all of the objects in C⊆j′(h) remain unassigned, and thus may be offered to j′.

21



thus the probability of any particular allocation µ is just the number of agent orderings such
that a serial dictatorship under such an ordering results in µ, divided by N !, the total number
of possible agent orderings. Similarly, in the symmetrization of (Γ, S), the probability of µ is
the number of role assignment functions σ ∈ Σ such that the permuted mechanism (Γσ, Sσ)

results in µ. Thus, if we can find a bijection f ∶ Σ → Ord such that for every σ ∈ Σ, the
permuted mechanism (Γσ, Sσ) results in the same allocation as a serial dictatorship under
agent ordering fσ(1), . . . , fσ(N)—where fσ(j) denote the jth ranked agent under the agent
ordering fσ—the distribution over allocations in the symmetrized millipede will have been
shown to be the same as the distribution over allocations in Random Priority, which will
prove Proposition 2 (and hence, also Theorem 1).

The rest of the proof is devoted to constructing the necessary bijection f . In Step 4 here,
we introduce a coding algorithm that takes a continuation game under a role assignment
function Γσ and maps (or “codes”) it to a partial ordering of the agents, denoted ». This
partial ordering may include ties, and Steps 5 and 6 below show how to take these partial
orderings and break ties to obtain the full bijection f ∶ Σ→ Ord.

The intuitive idea behind constructing » is as follows. We start by finding the first agent
to clinch some object x after a (possibly empty) series of passes at some history h. This
induces a chain of assignments of the active agents A(h) as in Step 3. We create » by
ordering agents who receive lurked objects in order of the “age” of the object they received,
i.e., the first agent in the ordering is the agent who receives the object that became lurked
first, the second is the agent who received the object that became lurked second, and so
forth (note that this is different from ordering lurkers by their age, as a lurker may end up
receiving a different object than the one she lurked).

After ordering the agents who receive lurked objects, there are at most 2 active agents
who have yet to be coded, one of whom has clinched an unlurked object, say y;25 if y was
previously offered to the remaining active agent, then we add both remaining agents to the
order without distinguishing between them, i.e., these two agents tie; if y was not previously
offered to the other remaining active agent, then we only add to the ordering the agent who
clinched y. The other active agent (if such an agent exists) will be added in a later step
triggered by a later clinching; at the beginning of the next segment this agent is still active
with the carried over “endowment” of previously clinchable objects, C⊆j (h) (cf. Remark 1).
After clearing this first segment of agents, we continue along the game path and find the
next agent to clinch an object, and repeat.

To illustrate, consider again the game from Section 4 under the role assignment function
25This is because, as shown in Step 3, there can be at most two active non-lurkers at any given point.

22



i3

x y

pass i2

y

pass

i3 → z
i1 → x

i1

x y z

i3 → z
i2 → y

i3 → z
i2 → x

i3

x y

i2 → y i2 → x

i2

y z

i1 → z i1 → y

i2

x z

i1 → z i1 → x

1

Figure 3: The example from Section 4 under the role assignment σ′′(r1) = i3, σ′′(r2) = i2,
and σ′′(r3) = i1 and preferences ≻i1 ∶ x, y, z, ≻i2 ∶ x, y, z, ≻i3 ∶ z, y, x. The dashed lines show the
path of play.

σ′′(r1) = i3, σ′′(r2) = i2, and σ′′(r3) = i1. The path of play of the game under this role
assignment is shown by the dashed lines in Figure 3. Agent i3 moves first, and her top choice
is z. She is offered to clinch only x and y at her first move, while z is possible later in the
game if she passes, and so her obviously dominant strategy is to pass. Upon passing, i3 has
now been offered all objects that are possible for her in the game except for one (object z),
and thus i3 becomes a lurker, and z becomes a lurked object. We follow the dashed line
until we find the first agent to clinch, which in this case is agent i1, who clinches object
x. This triggers the ordering of the currently active agents—which in this case is all of the
agents—and orders them by first ordering agents who receive lurked objects according to
the age of the lurked object they receive. Thus, agent i3 is ordered first in the corresponding
serial dictatorship, because when i1 clinches the (unlurked) object x, i3 receives the lurked
object z, followed by i1, and then i2; in other words, fσ′′(1) = i3, fσ′′(2) = i1, and fσ′′(3) = i2.26

We now present the formal definition of the coding algorithm just described.

Coding Algorithm. Consider a permuted mechanism (Γσ, Sσ), and take the game path
from the root node h∅ to a terminal node h̄ when agents follow the strategy profile Sσ. Each
step k of the algorithm below produces a partial ordering »̃

k on the set of agents who are
processed in step k. At the end of the final step K, we concatenate the K components to
produce », the final coding on the set of all agents N .

Step 1 Find the first object to be clinched along the game path, say x1 at history h1 by agent
i1.27 Let L(h1) = {`1, . . . , `λ(h1)} be the set of lurkers, and X L(h1) = {x1, . . . , xλ(h1)} be

26How to order the (up to two) active non-lurkers is a subtlety that we discuss when providing the full
algorithm below.

27That is, ih1 = i1, and i1 selects a clinching action ax1 ∈ A(h1) that clinches x1. By Lemma 13, i1 ∉ L(h1).

23



the set of lurked objects at h1, where xk is the k-th object to become lurked and `k

the lurker of this object; if these sets are empty, skip directly to step 1.2 below.

1. For xk ∈ X L(h1), let ixk be the agent who receives xk at h̄.28

2. Let j ∈ L(h1)∪{i1} be the unique agent that is not one of the agents ix1 , ..., ixλ(h1) from
step 1.1. Because we restricted attention to millipedes satisfying properties 1-5 above,
j receives an unlurked object y ∈ X̄ L(h1) and there may be at most one active agent
j′ ∈ A(h1) ∖ (L(h1) ∪ {i1}).

(a) If such a j′ exists and y ∈ C⊆j′(h1), then define »̃1 as:

ix1»̃
1ix2»̃

1
⋯»̃

1ixλ(h1)»̃
1
{j, j′}

(b) Otherwise, define »̃1 as
ix1»̃

1ix2»̃
1
⋯»̃

1ixλ(h1)»̃
1j

In particular, if j′ exists and y ∉ C⊆j′(h1) then we do not yet order agent j′.

Step k Find the first object to be clinched along the game path by an agent that has not
yet been ordered, say xk at history hk by agent ik. Let L(hk) = {`1, . . . , `λ(hk)} be the
set of lurkers, and X L(hk) = {x1, . . . , xλ(hk)} be the set of lurked objects, and carry out
a procedure analogous to that from step 1 to produce the step k order »̃k.

This produces a collection of codings (»̃
1, . . . , »̃K), where each »̃

k is a partial order on the
agents processed in step k. We then create the final » in the natural way: for any two agents
i, j who were processed in the same step k, i » j if and only if i»̃kj. For any two agents i, j
processed in different steps k and k′ respectively, where k < k′, we order i » j.

The output of the coding algorithm is a partial order, », on N , the set of agents. If i » j,
we say that i precedes j. If there are two agents i and j such that i /» j and j /» i, then we
say i and j tie under ». We also use the notation i » {j, k} » ` to denote that i precedes
j and k, the latter two agents tie, and in turn these two agents precede `. Note that by
construction, all ties are of size at most 2, and agents can only tie if they are processed in
the same step of the algorithm.

Notice the difference between superscript in x1, which refers to the step of the algorithm, and the subscripts
in lurked objects, which refer to the order in which they were lurked. In the notation for lurkers `h

1

k and
lurked objects xh

1

k we suppress the history superscript.
28Note that ixk

is not necessarily the agent who lurks xk at h1.

24



Remark 2. The coding algorithm divides the game path from the root to the terminal node
into a series of K steps. At the end of each coding step, there may be one agent, say j′,
who was active during the step, and was not coded in the step. When this occurs, at the
the initial history of the continuation game that begins after all agents from the previous
step have been assigned their objects, agent j′ is called to move, and is offered the to clinch
everything that she has been offered to clinch previously in the game (and might have other
moves). The next step of the coding algorithm is initiated the first time an agent clinches
an object in this continuation game, and the process is repeated. This recursive structure is
further discussed in Remark 1.

Each role assignment function σ induces a permuted mechanism (Γσ, Sσ), and each per-
muted mechanism has an associated coding »σ obtained via the applying the coding algo-
rithm to the mechanism (Γσ, Sσ). This results in a collection of N ! codings (»σ)σ∈Σ. Codings
do not map directly to serial dictatorship orderings, because some agents may tie. In the
remainder of the proof, we show that (i) no matter how these ties are broken, the resulting
serial dictatorship results in the same allocation as the original game (Γσ, Sσ) (Step 5) and
(ii) it is possible to break ties across all of the N ! codings in such a way that the resulting
mapping from permuted games to serial dictatorship orderings is a bijection (Step 6).

Step 5: Same Allocations

Take a role assignment function σ and the resulting coding »σ. We say that a total ordering
of the agents fσ is consistent with »σ if, for all j, j′: j »σ j′ implies f−1

σ (j) < f−1
σ (j′). In

other words, given some coding »σ, total order fσ is consistent if there is some possible way
to break the ties in »σ that delivers fσ. We further say that fσ is consistent with »σ on
an initial segment till an agent i if, for all j, j′ that either precede i or tie with i, if
j »σ j′ then f−1

σ (j) < f−1
σ (j′).

Lemma 3. For any agent i and any total order fσ consistent with »σ on an initial segment
till i, the allocation of agents who precede or tie with i under the serial dictatorship with
agent ordering fσ is the same as their allocation in Γσ. In particular, given two games ΓA

and ΓB played under role assignment functions σA and σB, respectively, if »A=»B, then ΓA

and ΓB end with the same final allocations to all agents.

We prove this lemma in Supplementary Appendix B.2. Given »σ, any way of breaking
the ties (if any ties exist) between agents produces a total order fσ that is consistent with
»σ. Thus, by Lemma 3, no matter how ties are broken, the mechanism (Γσ, Sσ) ends with
the same allocation as the serial dictatorship with agent ordering fσ.

25



Step 6: Bijectivity

Finally, we show that it is possible to break the ties in (»σ)σ∈Σ in such a way to produce a
mapping f ∶ Σ → Ord that is a bijection. We prove bijectivity using two lemmas—Lemmas
4 and 5—on the properties of the partial orders produced by the coding algorithm applied
to games with different role assignments. The proofs of these lemmas can be found in
Supplementary Appendix B.2.

Let hkA be the history that initiates step k of the coding algorithm when it is applied
to game ΓA. For instance, h1

A = (h∅, a∗, . . . , a∗) is a history following a (possibly empty)
sequence of passes such that agent ih1

A
moves at h1

A and is the first agent to clinch in the
game. This induces a chain of assignments of the agents in L(h1

A) ∪ {ih1
A
}, plus possibly

one other active non-lurker at h1
A, as given in the description of millipede mechanisms with

lurkers. History h2
A ⊋ h1

A is then the next time along the game path that an agent who was
not ordered in step 1 of the coding algorithm clinches an object, etc. Define hkB analogously,
and let KA and KB be the total number of steps in the coding algorithm when applied to
games ΓA and ΓB, respectively.

Lemma 4. Let σA and σB be two role assignment functions, and ΓA and ΓB their associated
games. Let »kA be the initial segment of »A consisting of agents ordered up to and including
step k of the coding algorithm in game ΓA. If ordering »kA equals to an initial segment of
»B, then hk

′
A = hk

′
B for all k′ = 1, . . . , k and σ−1

A (i) = σ−1
B (i) for all agents i who are coded up

to step k. In particular, if »A=»B, then hkA = hkB for all k, KA =KB, and σ−1
A (i) = σ−1

B (i) for
all i ∈ N .

The previous lemma shows that the mapping from role assignments to codings (partial
orderings) is injective. As there may be ties in some codings, what remains to show is that
it is possible to break the ties in all codings in such a way that preserves the injectivity. The
next lemma provides the key tool needed to do this.

We write j1⋯jP » i » j » ⋯ when » ranks j1, ..., jP first, possibly with ties; ranks i
immediately (and strictly) after, and then ranks j immediately (and strictly) after i. We
write j1⋯jP » i » {j, k}⋯ when » ranks j1, ..., jP first, possibly with ties, and then ranks the
tie {j, k} immediately after. We write j1⋯jP » i » j⋯ to denote the case in which either of
the two previously possibilities may hold (i.e., j may or may not tie with some other agent
k).

Lemma 5. Assume that there exist positive integers n,m ≥ 1 and two sequences of role
assignment functions, Σ = {σ1, σ2, . . . , σn, σn+1} and Σ′ = {σ′1, σ

′
2, σ

′
3, . . . , σ

′
m, σ

′
m+1} such that

26



σ1 = σ′1 and the resulting codings are:

Sequence Σ: j1⋯jP »1 {i, k1} »1 ⋯

j1⋯jP »2 k1 »2 {i, k2} »2 ⋯

j1⋯jP »3 k1 »3 k2 »3 {i, k3} »3 ⋯

⋮

j1⋯jP »n k1 »n k2 »n k3 »n ⋯ »n kn−1 »n {i, kn} »n ⋯

j1⋯jP »n+1 k1 »n+1 k2 »n+1 k3 »n+1 ⋯ »n+1 kn−1 »n+1 kn »n+1 i⋯

Sequence Σ′: j1⋯jP »
′
1 {i, k1} »

′
1 ⋯

j1⋯jP »
′
2 i »

′
2 {k1, k

′
2} »

′
2 ⋯

j1⋯jP »
′
3 i »

′
3 k

′
2 »

′
3 {k1, k

′
3} »

′
3 ⋯

⋮

j1⋯jP »
′
m i »

′
m k

′
2 »

′
m k

′
3 »

′
n ⋯ »′m k

′
m−1 »

′
m {k1, k

′
m} »′m ⋯

j1⋯jP »
′
m+1 i »

′
m+1 k

′
2 »

′
m+1 k

′
3 »

′
m+1 ⋯ »′m+1 k

′
m−1 »

′
m+1 k

′
m »′m+1 k1⋯

where the partial order on j1⋯jP is the same in all above codings. Then, one of the following
must hold:

(I) In »n+1, agent i ties with some agent kn+1; or
(II) In »′m+1, agent k1 ties with some agent k′m+1.

Notice the symmetry between sequences Σ and Σ′, to which we also refer as arms. They
have the following properties:

• Each arm starts with the same role assignment and codings, i.e., σ1 = σ′1 and »1=»
′
1.

• In arm Σ, every subsequent coding ranks k1 strictly ahead of all other agents (besides
the jp’s), while in Σ′, every subsequent coding ranks i ahead of all other agents (besides
the jp’s).

• Within arm Σ, the only difference from ` to `+1 is that the agent k` who tied with i in
»` is now ranked strictly above i, with i now tied with a different agent, k`+1 (except
for »n+1, in which case i is ranked next, but may or may not tie with another agent).
A similar remark applies to Σ′.

• Across the two arms, it is possible that some or all of the agents k2, . . . , kn are the same
as the agents k′2, . . . , k′m, though it is not necessarily assumed. We also do not require
m = n.

27



By Lemma 4, the mapping from role assignments σ to codings »σ generated by the coding
algorithm is injective. Using Lemma 5, we break the ties to create from each »σ a consistent
total order fσ in a way that preserves the injectivity. We proceed with the following two
tie-breaking steps:

Tie-Breaking Step 1. For all role assignments σ, in coding »σ we break any tie {i, k1} so
that i »σ k1 if and only if, in the original set of codings, there is an arm of the form Σ from
Lemma 5 in which the second coding starts with j1⋯jP » k1 » for some j1, ..., jP ≠ i and in
the last coding agent i does not tie; analogously, we break any tie {i, k1} so that k1 »σ i if
and only if there is an arm of the form Σ′ from Lemma 5 in which the second coding starts
with j1⋯jP » i » for some j1, ..., jP ≠ k1 and in the last coding agent k1 does not tie.

Lemma 5 guarantees that the tie-breaking procedure just described is well-defined, in the
sense that it will produce no conflicts in how to break a given tie. In particular, if there is an
arm that forces a tie-break such that, say, i »σ k1, then Lemma 5 implies that there cannot
be an arm that forces a tie-break such that k1 »σ i.

Lemma 5 further implies that, if »σ starts with j1⋯jP »1 {i, k1} and we broke the tie
i »σ′ k1 (the other fully case is symmetric) then (i) no other coding starts with j1⋯jP »σ′

i »σ′ k1 »σ′ and (ii) no other coding starts with j1⋯jP »σ′ i »σ′ {k1, k2} for some k2 and the
above tie-breaking procedure breaks the tie so that k1 »σ′ k2. By applying observations (i)
and (ii) to tie breaks, starting at the end of each coding, we infer that the resulting mapping
from permutations to partially tie-broken codings remain injective.

Importantly, the above tie-breaking procedure did not create any new ties that could be
broken as in Tie-Breaking Step 1. Indeed, if, say, a broken tie {i, k`} creates a new arm that
would allow a tie break at {i, k1} then, the structure of the arms in the statement of Lemma
5 implies that before the former tie-break, the latter tie is broken by the union of the arm
from {i, k1} till {i, k`} and the arm that allowed us to break the tie {i, k`}.

Tie-Breaking Step 2. After the end of Tie-Breaking Step 1, there may still be ties remain-
ing. If there are no ties remaining, then Step 1 has already produced an injective mapping
from codings to consistent total orderings, and we skip to the last paragraph of the proof.
If there are ties remaining, then it must be that all arms that begin with these ties end
with the last agent being in a tie. We then proceed recursively. We look over all ties in the
partial orders created in Tie-Breaking Step 1 across all permutations σ and find a tie—say
{i, k1}—that has the largest number of agents ranked above it. If such a tie {i, k1} exists
then we break this tie arbitrarily. Because we broke only one such tie, the “at least one tie”
structure of arms stated in Lemma 5 holds for the resulting set of partial orderings. We can
thus perform the same tie breaking as was done in Tie-Breaking Step 1 and, as above, the
resulting mapping from permutations to partially tie-broken codings remain injective and,

28



in all remaining ties, all arms end with the last agent being in a tie.
We repeat the above tie-breaking procedure iteratively: we look over all ties in partial

orders created so far in Tie-Breaking Step 2, across all permutations σ, and again find a
tie that has the largest number of agents ranked above it and repeat the Step-2 tie break
procedure above. We proceed in this way till all ties are broken and we have constructed an
injective mapping from permutations to total orderings.

As the resulting total orderings are created by breaking ties in the original codings, the
complete orderings are consistent with the original codings. Hence we created an injective
mapping from permutations to total orderings that are consistent with codings. In this
way we obtain an injection from role assignments σ to serial dictatorships with orders fσ.
Because in this injection the domain of role assignments σ and the range of serial dictatorship
orderings fσ are finite and have equal size, this injection is a bijection.

Step 7: Recap

To recap, we have shown the following:

1. Every Pareto-efficient, OSP mechanism (Γ, S) is equivalent to a (perfect-information)
millipede mechanism satisfying properties 1-5 in which Nature moves once (if at all)
as the first mover (Lemma 2).

2. For any millipede mechanism satisfying properties 1-5, there is a bijection f between
role assignment functions and serial dictatorship orderings such that the final allocation
of the permuted mechanism (Γσ, Sσ) results in the same final allocation as a serial
dictatorship using the agent ordering fσ (Lemmas 3, 4 and 5).

3. Point (2) implies that the symmetrization of (Γ, S) is equivalent to Random Priority
(see the argument in the first paragraph of Step 4).

4. Since the symmetrization of every OSP, Pareto-efficient and deterministic perfect-
information mechanism (Γ, S) is equivalent to Random Priority, then every symmetric,
OSP, and Pareto-efficient mechanism is equivalent to Random Priority (Lemma 1).

This completes the proof of Theorem 1.

29



Supplementary Appendix (for Online Publication)

B.1 Proof of Proposition 2

Properties 1-4 follow from the millipede theorem of Pycia and Troyan (2023), as explained in
footnote 21. Thus, we focus on establishing property 5. We start with two results—Lemmas
6 and 7—on the connection between lurkers and BG lurkers.

Given a subset of objects X ′ ⊆ X and a preference ranking for agent i, ≻i, let Top(≻i
,X ′) be the highest ≻i −ranked object in the set X ′. Given some history h, let h′ be the
maximal superhistory of the form h′ = (h, a∗, . . . , a∗). Following Bade and Gonczarowski
(2017) (thereafter BG), we call h′ a terminating history, and the agent who moves at h′

a terminator. The terminating history provides an upper bound on the number of passes
that can be taken in a row, i.e., at the terminating history, the agent that moves has only
clinching actions. Note that there may be many terminating histories along the full game-
path, and that the definition of the terminating history is only a function of the game form
Γ, and is independent of the lurker definition that is considered.

Lemma 6. Let h be a history such that there is an active BG non-lurker j such that x ∈ C⊆j (h)
for some object x that is BG-lurked at h. Then, h is a terminating history, and j is the
terminator.

Proof. Let h̄ be the largest proper subhistory of h, h̄ ⊊ h, such that the set of BG-
lurked objects at h̄ is empty. It is sufficient to show that for the smallest superhistory h ⊇ h̄
that satisfies the statement of the lemma, h is a terminating history. Define h′ such that
h = (h′, a∗), i.e., h′ is the immediate predecessor of h; such a predecessor exists because there
are BG-lurked objects at h. By the supposition that h is the smallest superhistory of h̄ that
satisfies the statement of the lemma, we have that either (i) x is not BG-lurked at h′ or (ii)
x is BG-lurked at h′, but x ∉ C⊆j (h′).

For case (i), x first becomes BG-lurked at h. Let ` be the agent that BG-lurks x at h,
and notice that it must be ` that moves at h′.29 This implies that both j and ` are active at
h′, and neither are BG lurkers. Because there can be at most two active BG non-lurkers at
any history, all other active agents at h′ are BG lurkers. Now, consider h. At h, x ∈ C⊆j (h),
and so Lemma E.14 of BG implies Pj(h) = Gj(h). Further, j is the unique active agent such

29Assume not, i.e., assume some k ≠ ` moved at h′. Then, the maximal strict subhistory of h where
` moves is some h′′ ⊊ h′, and by definition of a BG lurker (i) P`(h) ≠ G`(h), (ii) x ∈ P`(h

′′), and (iii)
C⊆` (h

′′) = P`(h
′′) ∖ {x} hold.

This implies that ` is already a lurker for x at h′: since h′′ ⊊ h′, (i) and (ii) continue to hold at h′, while
for for (iii), if P`(h′) = G`(h′), then, since the game is a millipede game that satisfies properties 1-4, there is
no passing action at h′. This contradicts that x is not lurked at h′.

30



that Pj(h) = Gj(h).30 Thus, by properties 3 and 4, j moves at h and Pi(h) = Gi(h) = Ci(h),
and there is no passing action at h. Thus, h is the terminating history.

For case (ii), x ∉ C⊊j (h′) but x ∈ C⊆j (h) implies that j must move at h, and x ∈ Cj(h).
By BG Lemma E.14, Pj(h) = Gj(h). By property 4, Pi(h) = Gi(h) = Ci(h), and there is no
passing action at h. Thus, h is the terminating history. ∎

Lemma 7. At any h, there is at most one BG lurker that is not a lurker. If such an agent
i exists, then i is the youngest BG lurker at h, and h is a terminating history. Further, i
does not move at h.

Proof. Consider a history h̄ at which there are no BG lurkers (and thus, also no lurkers).
Because at each history, only one new BG lurker can be added, it is sufficient to show that
if h ⊋ h̄ is the smallest superhistory of h̄ such that there is a BG lurker that is not a lurker,
then h is a terminating history. Thus, let h = (h′, a∗), where at h′, all BG lurkers are lurkers,
but at h, there is a BG lurker that is not a lurker; label this agent i. Then, it must be that
i first becomes a BG lurker at h, and at h, point (iv) in the definition of a lurker fails, i.e.,
there is some active BG non-lurker j ≠ i that has been previously offered to clinch the object
that i BG lurks. Lemma 6 implies that h is the terminating history, and agent j moves at h.
Since no new agent has entered the game at h, and all agents other than j are BG lurkers at
h, there is only one BG lurker that is not a lurker. The rest of the statements follow easily
from the fact that h is a terminating history. ∎

The next four lemmas are analogues of statements derived for BG lurkers in BG; we
give the analogous BG lemmas in parentheses. Recall that L(h) and X L(h) are the sets
of lurkers and lurked objects, respectively, at history h. Let LBG(h) and X L,BG(h) denote
the sets of BG lurkers and BG-lurked objects. Notice that L(h) ⊆ LBG(h) and X L(h) ⊆

X L,BG(h), by definition. Further, by Lemmas 6 and 7, if L(h) ⊊ LBG(h) = {`1, . . . , `λBG(h)},
then L(h) = LBG(h) ∖ {`λBG(h′)}, where `λBG(h′) is the youngest BG lurker. Similarly, if
X L(h) ⊊ X L,BG(h) = {x1, . . . , xλ(h)} then X L(h) = X L,BG(h)∖{xλBG(h)}, where xλBG(h) is the
youngest BG-lurked object.

Lemma 8. (BG Lemma E.11) If agent i is active at h, then X̄ L(h) ⊆ Pi(h) ∪ C
⊊
i (h). If

i ∈ L(h), then X̄ L(h) ⊆ C⊊i (h).
30For any active lurker ` at h, P`(h) ≠ G`(h) by definition. The only other possibility is that some k

becomes active at h, and is such that Pk(h) = Gk(h). If this is the case, by BG Lemma E.11, all BG-
unlurked objects are possible for k at h. If Pk(h) = Gk(h), then she can clinch any BG-unlurked object at
h, by property 4. Consider k clinching some BG-unlurked object y. By BG Lemma E.17, all BG lurkers at
h are assigned their BG lurked objects, and so no BG-lurked object is in Gj(h). But, y was arbitrary, and
so no BG-unlurked object is in Gj(h) either, and so Gj(h) is empty, which contradicts that Pj(h) = Gj(h).

31



Proof. For the first part, for any x ∈ X̄ L(h) that is also BG-unlurked, the statement
follows from BG Lemma E.11. So, consider some x ∈ X̄ L(h) but x ∈ X L,BG(h). As shown
above, there is only one such object, and it is x = xλ(h), the youngest lurked object at h.
Further, by Lemma 7, this condition only obtains when h is a terminating history, and the
active agents at h are `1, . . . , `λ(h), j where: `1, . . . , `λ(h)−1 are both lurkers and BG lurkers,
`λ(h) is a BG lurker but not a lurker, and j is the terminator (and neither a lurker nor a BG
lurker). By BG Lemma E.16, xλ(h) ∈ P`′(h) for all `′ ∈ {`1, . . . , `λ(h)}, while by BG Lemma
E.18, xλ(h) ∈ C⊆j (h).

The second part follows from the first part and the definition of a lurker. ∎

Lemma 8 has the following corollary, which will be useful in the proof constructing the
bijection between role assignments and SD orderings later.

Corollary 3. If, at history h, agent i clinches x ∈ X̄ L(h) that is unlurked at h, then x =

Top(≻i, X̄ L(h)).

Proof. By Lemma 8, all unlurked objects have either been clinchable at some subhistory
of h, or are still possible. Thus, if x ≠ Top(≻i, X̄ L(h)), it would not be obviously dominant
for agent i to clinch x ∈ X̄ L(h) at h, a contradiction. ∎

Lemma 9. (BG Lemma E.16) Let L(h) = {`h1 , . . . , `
h
λ(h)} be the set of lurkers at h and

X L(h) = {xh1 , . . . , x
h
λ(h)}, with `

h
1 lurking xh1 , `h2 lurking xh2 , etc., where m < m′ if and only if

`hm became a lurker at a strict subhistory of the history at which `hm′ became a lurker. Then,

1. xh1 , . . . , xhλ(h) are all distinct objects.

2. For all m = 1, . . . λ(h), P`hm(h) = X(h) ∖ {xh1 , . . . , x
h
m−1}.

Proof. Because any lurker is a BG lurker, and the same applies to lurked objects, this is
immediate from BG Lemma E.16. ∎

Lemma 10. (BG Lemma E.19) For all h, ∣L̄(h)∣ ≤ 2.

Proof. By BG Lemma E.19, there can be at most two BG non-lurkers at h. If there
exists a non-lurker that is not a BG non-lurker, by Lemmas 6 and 7, all active agents except
for one are BG lurkers, and at most one BG lurker is a non-lurker. Thus, there are at most
two non-lurkers at h. ∎

Lemma 11. (BG Lemma E.18, E.20) Let h be a history with lurked objects and let ih′ = t
be the agent who moves at the maximal superhistory of the form h′ = (h, a∗, . . . , a∗). Then:

(i) Agent t is not a lurker at h.
(ii) C⊆t (h′) = X(h).

32



(iii) If ih ≠ t, then Cih(h) ∩C
⊆
t (h) = ∅.

(iv) If x` ∈ Pj(h) for some non-lurker j and lurked object x` ∈ X L(h), then j = t.
(v) C⊆t (h′) = X(h).

Proof. Notice first that parts (ii), (iii), and (v) do not make any reference to lurkers or
lurked objects, and thus these parts follow immediately from the corresponding statements
in BG Lemma E.18. BG Lemma E.18 part (i) says that agent t is not a BG lurker, and
thus, agent t is not a lurker either, which shows part (i). What remains is to show part (iv).
For all h ⊊ h′, any non-lurker is also a BG non-lurker by Lemmas 6 and 7, and any lurked
object is also a BG lurked object, and so the result follows from the corresponding lemma of
BG. Thus, consider h′. By Lemma 6 and Lemma 7, at h′, either LBG(h′) = L(h′) or L(h′) =
LBG(h′)∖{`λBG(h′)}. Similarly, either X L,BG(h) = X L(h) or X L(h′) = X L,BG(h′)∖{xλBG(h)}.
If j is a BG non-lurker, then the result is immediate from the corresponding lemma of
BG. It remains to consider j who is a non-lurker but a BG lurker. By Lemma 7, j is a
BG lurker for xλBG(h′). Notice that xλBG(h′) is not lurked at h′ (though it is BG-lurked).
Thus, the lurked objects at h′ are X L(h′) = {x1, . . . , xλBG(h′)−1}. By Lemma E.16 from BG ,
Pj(h′) = X(h′) ∖ {x1, . . . , xλBG(h′)−1}; in other words, for any x ∈ X L(h′), we have x ∉ Pj(h′),
and so the statement holds vacuously. ∎

We finish with three additional lemmas, Lemmas 12-14.

Lemma 12. If i ∈ L̄(h) and x` ∈ C⊆i (h) for some x` ∈ X L(h), then ih = i, Pi(h) = Gi(h) =

Ci(h), and there is no passing action at h (that is, h is a terminating history).

Proof. If x` is lurked at h then x` is BG-lurked at h; thus if i is a BG non-lurker at
h, then the result follows from Lemma 6. So, assume that i is a non-lurker that is a BG
lurker at h. We claim that for any lurked object x` ∈ X L(h), we have x` ∉ C⊆i (h), and so the
result holds vacuously. To show it, let h′ be such that h = (h′, a∗), i.e., h′ is the immediate
predecessor of h. By Lemma 7, h must be a terminating history, agent i moves at h′ and
passes, and becomes a BG lurker at h. Note that x` is BG-lurked at h. If x` ∈ C⊆i (h), then,
since i does not move at h, we have x` ∈ C⊆i (h′) as well. Because x` cannot be the object i
BG lurks at h, object x` must be BG-lurked at h′ by some other agent. But then, at h′, i
is not a BG lurker, and has previously been offered to clinch a BG-lurked object. Thus, by
Lemma 6, h′ is a terminating history, which is a contradiction. ∎

Lemma 13. For any history h and any superhistory h′ ⊇ h of the form h′ = (h, a∗, a∗, . . . , a∗),
we have ih′ ∉ L(h) and ih′ ∉ L(h′).

Proof. The claim is immediate if L(h) = ∅. Suppose L(h) ≠ ∅. We only show ih′ ∉ L(h)

as ih′ ∉ L(h′) then follows by setting h′ = h. Let L(h) = {`h1 , . . . , `
h
λ(h)} be the set of lurkers

at h and X L(h) = {xh1 , . . . , x
h
λ(h)} the set of lurked objects.

33



First, assume h ≠ h′. Assume that the statement was false, and let h′ = (h, a∗, a∗, . . . , a∗)

be the smallest superhistory of h such that ih′ = `hm for a lurker `hm (that is, ih′′ ∉ L(h)
for all h ⊆ h′′ ⊊ h′). Note first that, for any h′′ such that h ⊆ h′′ ⊊ h′, ih′′′ = j ∈ L̄(h),
and if there exists some lurked xhm ∈ C⊆j (h′′), by Lemma 12, there is no passing action
at h′′, which is a contradiction. Therefore, any clinching action ay ∈ A(h′′) clinches some
y ∈ X(h) ∖ X L(h), and for all terminal histories h̄ ⊃ (h′′, ay), each lurker `hm ∈ L(h) receives
his lurked object xhm. Finally, consider history h′. By Lemma 9, for each `hm ∈ L(h), P`hm(h′) =

P`hm(h) = X(h) ∖ {xh1 , . . . , x
h
m−1} (note that h′ is reached from h via a series of passes, and so

X(h) = X(h′)), and Top(≻`hm , P`hm(h′)) = xhm for all types ≻`hm such that h′ is on the path of
play. Therefore, by property 4 and greedy strategies, at h′, there is no clinching action ax
for any x ∈ P`hm(h′) ∖ {xhm}. Thus, the only possibility is that every action a ∈ A(h′) clinches
xhm.31 This then implies that `hm gets xhm at all terminal h̄ ⊃ h′. Combining this with the
previous statement that `hm gets xhm for all terminal h̄ ⊃ (h′′, ay) for any h ⊆ h′′ ⊊ h′ and
clinching action ay ∈ A(h′′), we conclude that `hm gets xhm for all terminal h̄ ⊃ h, i.e., `hm has
already clinched his object xhm at h. Thus, by definition of a millipede game, ih′ ≠ `hm, which
is a contradiction proving the first claim for h′ ≠ h.

Second, if h = h′ then let h∗ ⊊ h be the immediate predecessor history of h. By the just
proven part of the lemma, ih is not a lurker at h∗, and because ih moves at h, she cannot
move at h∗, and hence she is not a lurker at h. ∎

Lemma 14. Let i and j be active non-lurkers at a history h, and let y ∈ X̄ L(h) be an
unlurked object at h. Further, assume that ih = i and y ∈ Ci(h) ∩C

⊊
j (h). Consider a type ≻j

that reaches h, and define x̄ = Top(≻j, X̄ L(h)). Then, x̄ ≻j y.

Proof. By Lemma 11, part (iii), agent j cannot be the terminator. By Lemma 11, part
(iv), Pj(h) ⊆ X̄ L(h). Since i can clinch y at h, there must be some x ∈ Pj(h) such that
x ≻j y, by OSP. Since Pj(h) ⊆ X̄ L(h), we have x ∈ X̄ L(h), i.e., Top(≻j, X̄ L(h)) ≻j y. ∎

B.2 Proofs of Lemmas 3, 4, and 5

In the proofs that follow, we refer to roles in a game form Γ to state properties of Γ that
are independent of the specific agent that is assigned to that role. Analogously to the sets
of clinchable and possible objects for agents in a game, we write Cr(h) to refer to the set of
outcomes that are clinchable for the role r ∈ R at h and Pr(h) for the set of outcomes that
are possible for role r. Note that these sets do not depend on the role assignment function

31Note that there cannot be a passing action either: if there were, then, since every history is non-trivial,
there must be another action. But, as just argued, there can be no clinching actions for any other x ≠ xhm,
and thus there must be a clinching action for xhm, and the passing action would be pruned.

34



σ, and if for a particular role assignment, σ(r) = i, then Ci(h) = Cr(h), Pi(h) = Pr(h), etc.
Analogously to the sets A(h) and L(h) for active agents and lurkers at a history h, we write
AR(h) for the set of active roles at a history h, and LR(h) for the set of roles that are lurkers
at h. When we want to refer to the game form with agents assigned to roles via a specific
role assignment function σA, we write ΓA. In the proofs, we often move fluidly between
agents and roles; to avoid confusion, we use the notation i, j, k to refer to specific agents, and
the notation r, s, t to refer to generic roles. Finally, note that while the set of agents who
are lurkers at any h may differ depending on the role assignment function, the set of lurked
objects, the order in which they become lurked, and the set of lurker roles depend only on
h, and are independent of the specific agent assigned to the role that moves at h.

Unless otherwise specified, when we write the phrase “i clinches x at h” (or similar
variants), what is meant is that i moves at h, takes some clinching action ax ∈ A(h), and
receives object x at all terminal histories h̄ ⊇ (h, ax).

The following is a restatement of part (iv) of the definition of a lurker, but deserves an
emphasis, as it arises frequently in the arguments below.

Remark 3. If, at a history h, object x is such that x ∈ Cj(h) for an active non-lurker j at h,
then x cannot become the next lurked object along the passing path (h, a∗,⋯, a∗).

Proof of Lemma 3

We show the first statement; the second statement is then an immediate corollary. Suppose
agent i is ordered in step k of the ordering algorithm. First consider the case k = 1 and let
agent i∗ be the first agent to clinch in game Γσ and let h∗ be the history at which i∗ clinches;
this clinching induces the ordering of the first segment of agents in step 1 of the ordering
algorithm. Let X L(h∗) = {x1, . . . , xn} be the set of lurked objects at h∗; this set may be
empty.

Case: A(h) = L(h) ∪ {i∗}. If i∗ clinches an unlurked object y ∈ X̄ L(h∗), then, in Γσ, all
lurkers get their lurked objects (the oldest lurker `1 gets x1, the second oldest lurker `2 gets
x2, etc.), and in the resulting SD fσ, the agents are ordered fσ ∶ `1, `2, . . . , `n, i∗. By Lemma
9, for each lurker `m, we have xm = Top(≻`m ,X ∖{x1, . . . , xm−1}). When it is agent `m’s turn
in the SD, she is offered to choose from X ∖ {x1, . . . , xm−1}, and thus selects xm. Finally,
consider agent i∗. In game Γσ, when she clinches y at h∗, it is unlurked. By Corollary
3, y = Top(≻i∗ , X̄ L(h∗)). At her turn in the SD, the set of objects remaining is precisely
X̄ L(h∗), and so i∗ selects y.

In the remaining possibility, i∗ clinches some lurked object xm. Then all older lurkers
`1, . . . , `m−1 get their lurked objects in Γσ, and the resulting SD begins as fσ ∶ `1, . . . , `m−1, i∗.
By an argument equivalent to the previous paragraph, each of the lurkers once again gets the

35



same object under the SD. For agent i∗, since she took a lurked object at h∗ in Γσ, we have
xm = Top(≻i,X), and thus, at her turn in the SD, she once again selects xm, since it is still
available. Then, in Γσ, agent `m is offered to clinch anything from X∖{x1, . . . , xm}. If `m takes
another lurked object xm′ for some m′ > m, then each lurker `m+1, . . . , `m′−1 is assigned to
their lurked object, and we add to the SD order as fσ ∶ `1, . . . , `m−1, i∗, `m+1, . . . , `m′−1, `m. By
the same argument as above, at their turn in the resulting SD, each agent `m+1, . . . , `m′−1, `m

gets the same object in the SD.32 This process continues until someone eventually takes an
unlurked object, all remaining lurkers are ordered, and step 1 is completed.

Case: A(h) = L(h) ∪ {i∗, j} for some j ∈ A(h) ∖ (L(h) ∪ {i∗}). First consider the case
that i∗ clinches an unlurked object y ∈ X̄ L(h∗). If y ∉ C⊆j (h∗), then the argument is exactly
the same as in Case (1) (note that j is not ordered in step 1 in this case). If y ∈ C⊆j (h∗),
then the step 1 partial order is `1»̃

1
⋯»̃

1`n»̃
1
{i∗, j}. We must show that any SD run under

fσ ∶ `1, . . . , `n, i∗, j, . . . and f ′σ ∶ `1, . . . , `n, j, i∗, . . . result in the same outcome as Γσ for these
agents. For the lurkers, the argument is as above in either case. For i∗ and j, in game Γσ, by
construction, y ∈ Cj(h′) for some h′ ⊊ h∗. Let z = Top(≻j, X̄ L(h∗)), and note that by Lemma
14, z ≻j y. Since i clinched y at h∗, we have y ≻i z. In the SD, after all lurkers have picked,
the set of remaining objects is precisely X̄ L(h∗). Thus, it does not matter whether i∗ or j is
ordered next in the SD, as there is no conflict between them: in both cases, i∗ takes y, and
j takes z, and both fσ and f ′σ give the same allocation as Γσ. For the case where i∗ begins
by clinching some lurked object xm ∈ X L(h∗), we consider agent j and the lurker who, in
the chain of assignments, eventually takes an unlurked object y; otherwise, the argument is
analogous.

The proof so far has shown that we get the same allocation for all agents ordered in step
1 of the ordering algorithm. If k > 1 then we proceed recursively through steps 2, ..., k, as
follows: If all active agents at A(h∗) are processed in step 1 of the ordering algorithm, then
we repeat the same argument for the continuation subgame following the clinching by i∗ at
h∗; the second step of the coding algorithm for the original game is the same as the first step
of the coding algorithm for this continuation subgame. If not all active agents at A(h∗) are
processed in step 1, then there is at most one active agent j ∈ A(h∗) who is not processed
in this step. Agent j has been previously offered some objects in the set C⊆j (h∗) where
C⊆j (h∗) ⊆ X̄ L(h). The coding in the continuation subgame following the clinching at h∗ is
the same as coding in the Pareto-efficient auxiliary millipede that begins with agent j being
offered clinching from C⊆j (h∗) and passing, and that then moves into the above continuation

32When it is agent `m’s turn in the SD, the set of available objects is a subset of the set of objects that
were offered to her when she clinched in Γσ ∶ X ∖ {x1, . . . , xm′−1} ⊆ X ∖ {x1, . . . , xm}. However, xm′ belongs
to both sets, and so since `m takes xm′ in Γσ, she also takes it at her turn in the SD, when her offer set is
smaller.

36



subgame; the second step of the coding algorithm for the original game is the same as the
first step of the coding algorithm for this auxiliary millipede. ∎

Proof of Lemma 4

First consider k = 1 and suppose »̃1
A is equal to the initial part of the ordering »B. Define the

function gA(i) = ∣j ∈ N ∶ j »A i∣ + 1, which is the number of agents ranked strictly ahead of
i under »A. This function will almost correspond to i’s picking order in the resulting serial
dictatorship, except if i ties under »A; if i and i′ tie, then gA(i) = gA(i′). Define gB similarly.

Claim 1. If »̃1
A is equal to an initial segment of »B, then h1

A = h1
B.

Proof of Claim 1. Note that both h1
A and h1

B consist of a, possibly empty, sequence
of passing moves, and so one of these histories must be a subset of the other. Towards a
contradiction, assume that h1

A ≠ h1
B.

First, consider the case h1
A ⊊ h1

B. Define iA to be the agent that clinches at h1
A, and xA

to be the object that is clinched. Since there is a passing action at h1
A, object xA is unlurked

at h1
A, by Lemma 12. Since iA clinches an unlurked object at h1

A, we have xA = Top(≻iA
, X̄ L(h1

A)) by Corollary 3. By construction of the coding algorithm, gA(iA) = λ(h1
A)+1, where

λ(h1
A) = ∣LR(h1

A)∣ is the number of lurkers (and hence also the number of lurked objects)
that are present at h1

A. Since »̃1
A is equal to an initial segment of »B and iA is ordered in

step 1 of ΓA, we have gB(iA) = λ(h1
A) + 1 as well.33

We claim that X L(h1
A) = X

L(h1
B). First, notice that h1

A ⊊ h1
B implies LR(h1

A) ⊆ LR(h
1
B)

and X L(h1
A) ⊆ X

L(h1
B), which follows because at each history in the millipede at most one

object becomes lurked, and once an object is lurked, it remains lurked until it is clinched. If
X L(h1

B) ⊋ X
L(h1

A), then the (λ(h1
A)+1)th lurked object in ΓB (denoted xλ(h1

A)+1) must be xA
because (i) the coding algorithm puts the agent who receives xλ(h1

A)+1 as the (λ(h1
A) + 1)th

agent, and hence this agent is iA, and (ii) by Lemma 3, iA receives the same object under
both σA and σB. But, because xA ∈ Cr(h1

A), where r is the role that moves at h1
A and is

not a lurker, xA cannot be the (λ(h1
A) + 1)th lurked object, by part (iv) of the definition

of a lurker, which is a contradiction. Therefore, X L(h1
A) = X

L(h1
B). This also means that

LR(h1
A) = LR(h

1
B) and λ(h1

A) = λ(h
1
B); for simplicity, define λ1 ∶= λ(h1

A) = λ(h
1
B). Since xA is

unlurked at h1
A, it is also unlurked at h1

B.
Next, notice that some j ≠ iA moves at h1

A in ΓB, because otherwise, iA would take the
same (clinching) action at h1

A in ΓB, which contradicts h1
A ⊊ h1

B. Let s = ρ(h1
A) be the role

33This is a key point, and its analogue remains true in the alternate case h1B ⊊ h1A. There, gB(iB) =
λ(h1B) + 1, and we infer that also gA(iB) = λ(h1B) + 1. This follows because h1B ⊊ h1A implies λ(h1A) ≥ λ(h

1
B),

and so at least λ(h1B) + 1 agents are coded in step 1 of »̃1
A. Thus, at least the first λ(h1B) + 1 agents in »B

are in the same position in »A, which includes agent iB .

37



that moves at h1
A, and so by definition, σA(s) = iA and σB(s) = j. At h1

B, there are two
active non-lurker roles: role s and another role s′. This follows because role s moves at h1

A,
and there is a passing action, so the history h′ = (h1

A, a
∗) must be controlled by a different

active non-lurker role. Since there are no new lurkers at h1
B, and there can be at most two

active non-lurkers at any history, both roles s and s′ remain active non-lurkers at h1
B.

We claim that iA must tie with another agent in »B. To see this, note that if role s′

moves at h1
B, then iA will tie with agent j in »B, since xA ∈ C⊊s (h1

B) and σB(s) = j. If role s
moves at h1

B, then it is j that clinches at h1
B in ΓB. If j clinches an unlurked object at h1

B,
then gB(j) = λ1 + 1, and so iA ties with j in »B. If j clinches a lurked object, then role s
is the terminator role. Therefore, agent iA was in the terminator role in ΓA, and, since she
clinched xA first, we have xA = Top(≻A,X), which follows because all available objects are
possible for the agent in the terminator role, by Lemma 11. This implies that iA cannot be a
lurker at h1

B in ΓB, because if she were, she would have been offered to clinch xA, and since
it is her top object, would have clinched it prior to h1

B, by greedy strategies. Thus, the only
way for agent iA to be such that gB(iA) = λ1 + 1 is if she is an active non-lurker that does
not move at h1

B, which means that she must tie in »B with some agent.
Thus, we have shown that iA must tie with some agent k in »B, i.e., gB(iA) = gB(k) = λ1+1

for some k. Since iA is coded in step 1 of ΓA, and »̃
1
A is equal to an initial segment of »B,

we further have gA(iA) = gA(k) = gB(iA) = gB(k) = λ1 + 1; in other words, agent iA ties with
agent k in both »A and »B.

Since iA ties with k in ΓA, at h1
A, we have xA ∈ C⊊s′(h

1
A) for the other active non-lurker role

s′ at h1
A. We have seen that σ−1

B (iA) ≠ s. If σB(s′) = iA, then in ΓB, iA passed at some history
h′ ⊊ h1

A at which she was offered to clinch xA in ΓB. By Lemma 14, Top(≻iA , X̄ L(h1
A)) ≻iA xA,

which is a contradiction. Since we know that iA is coded in step 1 of ΓB, the only other
possibility is that in ΓB, iA is a lurker for some object z at h1

B, which implies that z ≻iA xA.
It also means that the agent that moves at h1

B in ΓB is clinching a lurked object (because
if an unlurked object were clinched, then iA would be assigned to z, a contradiction). This
implies that h1

B is the terminating history, by Lemma 12, and ρ(h1
B) is the terminator role.

We cannot have ρ(h1
B) = s, because then role s is the terminator role, and iA is in the

terminator role in ΓA and would not clinch xA first in ΓA, a contradiction. Thus, ρ(h1
B) = s

′,
and s′ is the terminator role. Finally, notice that at h1

A, role s is offered xA and xA ∈ C⊊s′(h
1
A),

which contradicts Lemma 11, part (iii).
The case h1

B ⊊ h1
A follows an analogous argument; cf. footnote 33 for the needed adjust-

ments. ∎

Thus far, we have shown that if »̃1
A is equal to the initial part of the ordering »B, then

h1
A = h1

B. We next show that the same roles are coded in step 1 of ΓA and ΓB, and further

38



that σA(r) = σB(r) for all such roles r.
Define h1 ∶= h1

A = h1
B. In both games, the first clinching is taken by the agent in role ρ(h1),

and the set of lurked objects and active lurker-roles are equivalent at the first clinching in
both ΓA and ΓB. Letting r0 = ρ(h1), write

σA(r0) → xa1 → σA(ra1) → xa2 → ⋯→ σA(raM ) → xaM+1
(A)

to represent the chain of clinching that is initiated in ΓA by agent σA(r0) at h1: agent σA(r0)

clinches some (possibly lurked) object xa1 , the agent σA(ra1) who was lurking xa1 clinches
lurked object xa2 , etc., until eventually agent σA(raM ) ends the chain by being the first agent
to clinch an unlurked object xaM+1

. Similarly, for ΓB, write

σB(r0) → xb1 → σB(rb1) → xb2 → ⋯→ σB(rbM ′) → xbM ′+1
. (B)

Note that the agents who begin the chains, σA(r0) and σB(r0) are not lurkers in their
respective games, while all of the remaining agents are lurkers.34 Also, not all of the agents
ordered in step 1 need to appear in the corresponding chain; in particular, any lurker who
receives their lurked object does not appear, nor does the other active non-lurker, if such an
agent exists. If M = M ′ and σA(ram) = σB(rbm) for all m = 0, . . . ,M , then we say (A) and
(B) are equivalent chains.

Claim 2. Suppose that (A) and (B) are equivalent chains. Then, the same roles are coded
in step 1 in ΓA and ΓB, and further, for all such roles, σA(r) = σB(r).

Proof of Claim 2. By construction of the coding algorithm, the set of roles coded during
the coding step initiated at h1

A consists of (i) all lurker-roles at h1
A, (ii) the non-lurker-role

that moves at h1
A, and potentially (iii) the active non-lurker role that does not move at h1

A;
label this role s. Since h1

A = h1
B, (i) and (ii) are the same in ΓA and ΓB. For (iii), role s is

coded in ΓA if and only if the first unlurked object in the chain, xaM+1
, has been offered to

role s to clinch prior to h1
A. Since the chains are equivalent, this holds in ΓA if and only if it

holds in ΓB, which establishes the first statement.
To see that σA(r) = σB(r) for all roles that are coded in step 1 of ΓA (and hence also step

1 of ΓB), note that because (A) and (B) are equivalent, the statement holds for any role that
appears in the chain. For roles that do not appear in the chain, if r′ is a lurker role that is
active at h1, the corresponding lurked object x′ is assigned to its lurker in both ΓA and ΓB,
and so »̃1

A equivalent to the initial part of the ordering »B implies that σA(r′) = σB(r′) for
all such roles, by Lemma 3.

34If there are no lurkers at h1, this is obvious; if there are lurkers, it follows from Lemma 13.

39



It remains to consider the active non-lurker role s that does not move at h1. Note that
M =M ′ and σA(rM) = σB(rM) implies, by Lemma 3, that xaM+1

= xbM ′+1
; let xM+1 ∶= xaM+1

=

xbM ′+1
, and recall that xM+1 is unlurked. If there is no such active role s, or if xM+1 ∉ C

⊊
s (h1),

then this role is not coded in step 1, and we are done. Thus, assume that s exists, and that
xM+1 ∈ C

⊊
s (h1). In this case, the agent assigned to role s is ordered in step 1 in both ΓA and

ΓB, and by construction, ties with agent σ(rM) ∶= σA(rM) = σB(rM) in both »A and »B.
Once again, »̃1

A equivalent to the initial part of the ordering »B implies that σA(s) = σB(s).
∎

Claim 3. Chains (A) and (B) are equivalent.

Proof of Claim 3. We begin by showing that σA(r0) = σB(r0). Towards a contradiction,
assume that σA(r0) ≠ σB(r0), which implies also that that xa1 ≠ xb1 Lemma 3. IfM =M ′ = 0,
then both chains have only one agent, σA(r0) and σB(r0), who immediately clinch unlurked
objects. Define σA(r0) = i and σB(r0) = j, where i ≠ j, since they are clinching different
objects in their respective games. Since »̃1

A is equal to the initial part of »B, and both i and
j clinch unlurked objects, this implies that i and j must tie under »A and »B. Thus, by
construction of the coding algorithm, there must be another non-lurker role s ≠ r0 that is
active at h1, and σA(s) = j and σB(s) = i, and xa1 , xb1 ∈ C

⊂
s (h

1). Since i clinches an unlurked
object xa1 at h1 in ΓA, we have xa1 = Top(≻i, X̄

L(h1)), by Corollary 3. Now, consider game
ΓB. Since σB(s) = i and xa1 ∈ C

⊊
s (h1), in game ΓB, there is some history h′ ⊊ h1 such that

xa1 ∈ Ci(h
′). By Lemma 14, we have Top(≻i, X̄ L(h1)) ≻i xa1 , which is a contradiction.

Now, consider the case that M > 0. This implies that a lurked object, xa1 , is clinched
at h1 in ΓA, which means that role r0 is the terminator role by Lemma 12. It also implies
that that xa1 is agent σA(r0)’s favorite object (among all objects X ). So, in game ΓB, agent
σA(r0) must be lurking object xa1 , i.e., she is in role ra1 in ΓB.35 Agent σA(ra1)—the agent
who lurks xa1 in ΓA—receives xa2 , and so in ΓB, must be the lurker for xa2 .36 Similarly,
agent σA(r2) must lurk xa3 in ΓB, etc., until we reach agent σA(rM). By similar reasoning as
footnote 36, we conclude that agent σA(rM) must be in role s in ΓB. For shorthand, define
k ∶= σA(rM), and so σ−1

B (k) = s.37

Finally, since σ−1
B (k) = s and k is ordered in step 1 of ΓB (see footnote 37), there must

35Since xa1 is lurked, it is only possible for “older” lurkers and the terminator. Agent σA(r0) cannot be
an older lurker in ΓB , because then she would have been offered xa1 , and, by greedy strategies, would have
clinched it. Nor can she be the the terminator, because σB(r0) ≠ σA(r0). Therefore, she must be in role ra1
in ΓB .

36This is because by definition of a lurker, agent σA(ra1) strictly prefers xa1 to all younger lurked objects
and all unlurked objects; thus, in ΓB , she cannot be an older lurker, because she would have been offered
xa1 , and thus could not end up with something she strictly disprefers (recall that by Lemma 3, all agents
receive the same objects in both games). She cannot be the terminator, because then, since h1A = h1B , and
all objects are possible for the terminator, she would clinch xa1 , which is again a contradiction to Lemma 3.

37Note that k is coded in step 1 of the coding algorithm applied to ΓA, and receives an unlurked object,

40



be some other agent j such that gB(j) = λ(h1) + 1, and so gA(j) = gA(k) = gB(j) = gB(k) =
λ(h1) + 1. Since gA(j) = λ(h1) + 1, j must be clinching an unlurked object in ΓA. Since
the first person to clinch an unlurked object in ΓA is k who clinches xaM+1

, it must be that
σ−1
A (j) = s and xaM+1

∈ C⊆s (h1). Finally, since σ−1
B (k) = s, we have xaM+1

∈ C⊆k (h
1) in ΓB, and

by Lemma 14, Top(≻k, X̄ L(h1)) ≻k xaM+1
. However, since k chose to clinch xaM+1

in ΓA and
xaM+1

was unlurked, we have Top(≻k, X̄ L(h1)) = xaM+1
, which is a contradiction.

The case where xb1 is lurked is analogous, and the argument is omitted. We have thus
shown that σA(r0) = σB(r0).

If agent σA(r0) clinches an unlurked object, then the proof is complete. If not, then the
above arguments can be repeated to show that σA(ra1) = σB(rb1), etc., until an unlurked
object is reached. This completes the proof of Claim 3. ∎

Claims 2 and 3 imply the following:

Claim 4. The same roles r′ are coded in step 1 of the coding algorithm applied to games ΓA

and ΓB, and for all these roles σA(r′) = σB(r′).

To complete the proof we establish the claim of the lemma for steps k > 1 of the coding
algorithm by an inductive argument. Suppose that the lemma obtains for steps 1, ..., k of
the coding algorithm. After the chain of clinchings initiated at hkA (which is the same as
hkB), we enter a subgame among agents and objects that were unmatched till step k. By
the inductive assumption, these subgames begin at some history ĥk+1 that is the same under
both σA and σB. As argued in Remark 1, these subgames continue to have the structure of
a millipede mechanism satisfying properties 1-5. Let hk+1

A ⊇ ĥk+1 be the first history at which
a clinching action is taken following a (possibly empty) sequence of passes in the subgame of
ΓA starting at ĥk+1; define hk+1

B ⊇ hk+1 analogously. If now »k+1
A equals to an initial segment

of »B, then we can repeat the arguments developed for k = 1 above to show that hk+1
A = hk+1

B ,
the same roles are coded in step k + 1 under σA and σB, and σA(r′) = σB(r′) for all roles
coded in step k + 1. The inductive argument completes the proof. ∎

Proof of Lemma 5

For a (fixed) game form Γ, we let Γτ denote the specific game under role assignment στ .
Note that the set of objects that are lurked at any given history depends only on the game
form, and is independent of the specific role assignment. We use the notation h∗τ for the first
history at which an object is clinched in Γτ ; that is, h∗τ = (h∅, a∗, . . . , a∗), where a∗ is the
number of passes taken by the agents until the agent who moves at h∗τ chooses to clinch at

so gA(k) = λ1 + 1, and therefore, gB(k) = λ1 + 1 . Since at least λ1 + 1 agents are coded in step 1 of ΓB , this
is only possible if agent k is also coded in step 1 of ΓB , and thus she must be active at h1, and so the only
possibility is that σ−1B (k) = s.

41



this history. The number of passes will depend on τ . For any agent j, we write xj to denote
the object that is ultimately received by agent j.

Note that it is without loss of generality to assume that for all games Γτ that we consider,
at h∗τ , the objects xj1 , . . . , xjP are all lurked, in this order. To see this, note that if not, then,
there is some game Γτ and p′ < P such that the last lurked object is xjp′ . Consider the
smallest such p′. Since p′ < P , this means that the agents coded in step 1 of the coding
algorithm are j1, . . . , jp′ , jp′+1, and possibly jp′+2, which can only occur if there is a tie at
the end of the step.38 Now, since all codings under consideration are exactly the same on
the agents j1, . . . , jp′ , jp′+1, jp′+2, by Lemma 4 we have that in all of the games we consider,
all of these agents are in the same roles, and, at the end of the first coding step, we reach
the same history in each game to begin the next coding step. Thus, we can disregard these
agents, and begin the analysis for each game at this history. Repeating this argument, we
continually eliminate all higher ranked agents until we reach a coding step at which all of
the remaining agents ranked strictly head of k1 are coded in the first step in of the relevant
continuation game.

Thus, for the entirety of this proof (including all sublemmas stated therein), we assume
that the objects xj1 , . . . , xjP are all lurked at h∗τ for all games we consider. Note that this
also implies that all agents j1, . . . , jP are ranked strictly, without ties, in all codings, and
that there are at least P + 1 agents coded in the first step of every game Γτ . We allow the
case P = 0, in which case there are no agents jp.

Since agent i ties in »1, she receives an object that is unlurked at h∗1, which means that
xi = Top(≻i, X̄ L(h∗1)). By the structure of the sequence, this also implies that for n′ ≥ 2, if
xi ∈ X̄ L(h∗n′), then xi = Top(≻i, X̄ L(h∗n′)) because each of the agents i, j1, ..., jP receives the
same object under both σ1 and σn′ (by Lemma 3), and from the game Γ1 we infer that i
prefers the object received (xi) to all objects except the objects assigned to j1, ..., jP , and in
game Γn′ no other object belongs to X̄ L(h∗n′).

We begin with the following Lemmas 15, 16, and 17, which show that, under certain
conditions, either condition (I) or (II) in the statement of the lemma will hold. Then, we
apply these lemmas to show that all cases are covered, which will prove the result. The
proofs of these lemmas can be found following the conclusion of this proof.

The first of these lemmas shows that if there is a sequence Σ such that n ≥ 2 and
such that the lurked objects on the initial passing path of the game form are (in order)
xj1 , . . . , xjP , xk1 , . . . , xkn−1 , then i must tie in »n+1.

38By construction of the coding algorithm, if there are p′ lurked objects at the initiation of a coding step,
then the number of agents coded in that step is either p′ + 1 or p′ + 2. Since all of the agents jp are ranked
strictly above the remaining agents, and p′ < P , none of the agents i nor kn′ can be coded in step 1 of the
game.

42



Lemma 15. Assume that there exists a sequence of role assignment functions Σ as defined in
the statement of Lemma 5, and such that n ≥ 2. Further, assume that along the initial passing
path of the game form, the first lurked objects are (in order) xj1 , . . . , xjP , xk1 , . . . , xkn−1.39

Then, at h∗n+1 in Γn+1, there is an agent ` ≠ j1, . . . , jP , k1, . . . , kn, i such that ` is an active
non-lurker at h∗n+1 that does not move at h∗n+1 and xi ∈ C

⊊
` (h

∗
n+1). Further, i must tie with

some other agent in »n+1, and we label this agent kn+1.

Remark 4. A supposition in Lemma 15 (and in Lemma 18, below) is that the first lurked
objects of the game form are xj1 , . . . , xjP , xk1 , . . . , xkn−1 , in this order, where n ≥ 2. A sufficient
condition for this to hold is the following: there is a game ΓA such that j1⋯jP »A k1 »A ⋯ »A

kn−1 »A {i, kn} »A ⋯ and i is coded in the initial step of the coding algorithm.
To see this, assume not, and let n′ be the smallest n such that xj1 , . . . , xjP , xk1 , . . . , xkn′−1

become lurked, but xkn′ is not the next lurked object. This means that at h∗A (the history
of the first clinching in ΓA), there are at most λ∗A = P +n′ − 1 lurked objects. Consider agent
kn′ . By construction, n′ < n, and so kn′ does not tie in »n. Thus, in the coding step in ΓA

that begins at h∗A, agent kn′ must be the first agent to clinch an unlurked object. This ends
the coding step at kn′ , without a tie, which contradicts that i is coded in this step in game
ΓA. ∎

The second of these lemmas shows that if there is a sequence Σ, plus an additional role
assignment function σ0 in which all j1, . . . , jP are ranked strictly above i, who is ranked
strictly above k1, who is ranked strictly above all other remaining agents, then i must tie in
»n+1.

Lemma 16. Assume that there exists a sequence of role assignment functions Σ as defined
in the statement of Lemma 5. If there exists another role assignment function σ0 with a
corresponding coding,

j1⋯jP »0 i »0 k1 »0 ⋯,

then in »n+1 of Σ, i must tie with some agent kn+1.

Remark 5 (Symmetry). Lemmas 15 and 16 were stated for sequence Σ, and concluded that
i must tie in »n+1. There are also symmetric versions of these lemmas that apply to sequence
Σ′ and conclude that k1 must tie in »m+1 that have the exact same proof.

The last of these lemmas deals with the case that neither xi nor xk1 are the (P + 1)th

lurked object on the initial passing path, nor does there exist a σ0 as in Lemma 16.
39We allow for the possibility that P = 0, but whether P = 0 or P > 0, the assumption that n ≥ 2 implies

that along the initial passing path of the game form, at least xk1 becomes lurked.

43



Lemma 17. Assume that there exist two sequences of role assignment functions Σ and Σ′

as defined in the statement of Lemma 5 such that n,m ≥ 2. Further, assume that along the
initial passing path of the game form, the objects xj1 , . . . , xjP all become lurked, in this order,
but neither xi nor xk1 is the (P + 1)th lurked object.Then, one of the following is true:

1. In »n+1, agent i must tie with some agent kn+1.

2. In »′m+1, agent k1 must tie with some agent k′m+1.

With these lemmas in hand, we can complete the proof of Lemma 5 as follows:

• If there exists σ0 such that j1⋯jP »0 i »0 k1 »0 ⋯, then we apply Lemma 16 to Σ to
conclude that (I) holds.

• If there exists σ′0 such that j1⋯jP »′0 k1 »
′
0 i »

′
0 ⋯, then we apply the symmetric version

of Lemma 16 with k1 and i swapped to Σ′ to conclude that (II) holds.

• If neither of the above two cases hold (i.e., there do not exist σ0 nor σ′0):40

– If xk1 is the (P + 1)th lurked object along the initial passing path, then we apply
Lemma 15 to Σ to conclude that (I) holds.

– If xi is the (P + 1)th lurked object along the initial passing path, then we apply
the symmetric version of Lemma 15 with k1 and i swapped to Σ′ to conclude that
(II) holds.

– If neither xk1 nor xi is the (P + 1)th lurked object along the initial passing path,
then we apply Lemma 17 to conclude that either (I) or (II) must hold. ∎

Proofs of Lemmas 15, 16, and 17

Proof of Lemma 15. We start with the following lemma.

Lemma 18. Assume that there exists a sequence of role assignment functions Σ as defined in
the statement of Lemma 5, and such that n ≥ 2. Further, assume that along the initial passing
path of the game form, the first lurked objects are (in order) xj1 , . . . , xjP , xk1 , . . . , xkn−1.41

Then:
(a) For all n′ = 1, . . . , n − 1, the agent that moves at h∗n′ in Γn′ is agent i, and at h∗n′, the

number of lurked objects is P + n′ − 1.
40Notice that the assumption that there is no σ0 or σ′0 imply that n,m ≥ 2, which is needed to apply

Lemma 15 below.
41We allow for the possibility that P = 0, but whether P = 0 or P > 0, the assumption that n ≥ 2 implies

that along the initial passing path of the game form, xk1 is the (P + 1)th lurked object. .

44



(b) h∗1 ⊊ h∗2 ⊊ ⋯ ⊊ h∗n−1 ⊊ h
∗
n.

(c) For all n′ = 1, . . . , n, the number of lurked objects at h∗n′ is P + n′ − 1.
(d) For all n′ = 1, . . . , n− 1, p = 1, . . . , P , and n′′ = 1, . . . , n′, in Γn′, agent jp is in the role

that lurks xjp and agent kn′′ is in the role that lurks xkn′′ .
(e) h∗n−1 ⊊ h

∗
n+1 and the number of lurked objects at h∗n+1 is at least P + n − 1.

Proof of Lemma 18. Part (a). Let λ∗n′ be the number of lurked objects at history
h∗n′ . Notice that since »n′ has a tie in the (P + n′)th place, we have λ∗n′ ≤ P + n′ − 1

for all n′ = 1, . . . , n. Towards a contradiction, assume there was a game Γn′ for which
i does not move at h∗n′ .. Since λ∗n′ ≤ P + n′ − 1, the structure of »n′ implies that the
lurked objects are {xj1 , . . . , xjP , xk1 , . . . , xkλ∗

n′ −P
},42 and the agents coded in step 1 of Γn′

are {j1, . . . , jP , k1, . . . , kλ∗
n′−P+1} (if λ∗n′ < P + n′ − 1) or {j1, . . . , jP , k1, . . . , kλ∗

n′−P+1, i} (if λ∗n′ =
P + n′ − 1). and the set of lurked objects is {xj1 , . . . , xjP , xk1 , . . . , xkλ∗

n′ −P
}. Now, notice that

it cannot be a lurked object that is clinched at h∗n′ . Indeed, if this were true, then h∗n′ is
the terminating history, which implies that xkλ∗

n′ −P
is the last lurked object on the initial

passing path of the game (Lemma 12). But, this contradicts the assumption that xkλ∗
n′ −P+1

is the next lurked object on the initial passing path, where notice that such an object exists
because λ∗n′ −P + 1 ≤ n′ ≤ n − 1. Thus, it must be an unlurked object that is clinched at h∗n′ .
In particular, by the structure of »n′ , the only possibilities are that agent kλ∗n−P+1 clinches
object xkλ∗n−P+1

, or agent i clinches xi, where the latter case is only possible if λ∗n′ = P +n′+1.
However, if agent kλ∗n−P+1 clinches object xkλ∗n−P+1

, then object xkλ∗n−P+1
has been offered to

an active non-lurker at h∗n′ , and so xkλ∗n−P+1
cannot be the next lurked object along the initial

passing path (Remark 3), a contradiction. Therefore, it must be that λ∗n′ = P + n′ − 1, and
agent i is the agent that moves at h∗n′ .

Parts (b). As shown in part (a), for n′ = 1, . . . , n − 1, there are λ∗n′ = P + n′ − 1 lurked
objects at h∗n′ , which immediately implies that h∗1 ⊊ h∗2 ⊊ ⋯ ⊊ h∗n−2 ⊊ h

∗
n−1 (because the number

of lurked objects only grows as we go down the initial passing path).
It remains to show that h∗n−1 ⊊ h

∗
n. By way of contradiction, assume that h∗n ⊆ h∗n−1. Then,

λ∗n ≤ λ∗n−1 = P +n−2, and the lurked objects at h∗n are {xj1 , . . . , xjP , xk1 , . . . , xkλ∗n
}. If a lurked

object is clinched at h∗n, then h∗n is the terminating history, and there is no passing action at
h∗n (Lemma 12). However, this contradicts that xkλ∗n+1

is the next lurked object on the initial
passing path. So, it must be an unlurked object that is clinched. By the structure of »n, it
must be kλ∗n+1 that clinches xkλ∗n+1

. But then, xkλ∗n+1
has been offered to active nonlurker at

h∗n, and so xkλ∗n+1
cannot be the next lurked object along the initial passing path (Remark

3), which is a contradiction. Therefore, h∗n−1 ⊊ h
∗
n.

42This is implicitly assuming that λ∗n′ > P . An analogous argument works for the case that λ∗n′ ≤ P , but,
for brevity, this argument is omitted.

45



Part (c). Part (a) shows this for n′ ≤ n−1. So, we must show λ∗n = P +n−1. Notice that
h∗n−1 ⊊ h

∗
n implies that λ∗n ≥ λ∗n−1 = P + n − 2, while the structure of »n (in particular, the tie

between agent i and kn), implies that λ∗n ≤ P + n − 1. Thus, we need to show λ∗n ≠ P + n − 2.
Assume that λ∗n = P + n − 2. Then, the lurked objects are xj1 , . . . , xjP , xk1 , . . . , xkn−2 , and the
agents coded in step 1 are j1, . . . , jP , k1, . . . , kn−2, kn−1. If a lurked object is clinched at h∗n,
then this is the terminating history, which contradicts that xkn−1 is the next lurked object
along the initial passing path (Lemma 12). If an unlurked object is clinched, then it must be
kn−1 clinching xkn−1 , but since this is offered to an active non-lurker, xkn−1 cannot be the next
lurked object along the initial passing path (3), a contradiction. Therefore, λ∗n = P + n − 1.

Part (d). By part (a), agent i moves at h∗n′ in Γn′ , and, since i ties in »′n, object xi
is unlurked. Therefore, all lurked objects are immediately assigned to their lurkers, which
delivers the result.

Part (e). To show h∗n−1 ⊊ h
∗
n+1, assume not. Then, h∗n+1 ⊆ h

∗
n−1, and λ∗n+1 = P + n̄ − 1 for

some n̄ ≤ n − 1. So, the lurked objects at h∗n+1 are xj1 , . . . , xjP , xk1 , . . . , xkn̄−1 , and the agents
coded in step 1 are j1, . . . , jP , k1, . . . , kn̄. Since n̄ ≤ n − 1, we know that xkn̄ must be the
next lurked object on the initial passing path. An argument analogous to those given above
delivers a contradiction.

To show λ∗n+1 ≥ P + n − 1, note that h∗n−1 ⊊ h
∗
n+1 implies λ∗n+1 ≥ λ

∗
n−1 = P + n − 2. Thus, we

must just show that λ∗n+1 ≠ P +n−2. So, assume this was the case. Then, the lurked objects
are xj1 , . . . , xjP , xk1 , . . . , xkn−2 , and the agents coded in step 1 are j1, . . . , jP , k1, . . . , kn−2, kn−1.
If a lurked object is clinched at h∗n+1, then this is the terminating history, which contradicts
that xkn−1 is the next lurked object along the initial passing path (Lemma 12). If an unlurked
object is clinched, then it must be kn−1 clinching xkn−1 , but since this is offered to an active
non-lurker, xkn−1 cannot be the next lurked object along the initial passing path (Remark
3), a contradiction. Therefore, λ∗n+1 ≥ P + n − 1.

This completes the proof of Lemma 18. ∎

Continuing with the proof of Lemma 15, we first show the first statement, that at h∗n+1

there is an agent ` ≠ j1, . . . , jP , k1, . . . , kn, i such that ` is an active non-lurker at h∗n+1 that
does not move at h∗n+1, and xi ∈ C

⊊
` (h

∗
n+1). By Lemma 18, we have (i) h∗n−1 ⊊ h∗n, h∗n+1

(ii) λ∗n = P + n − 1 and (iii) λ∗n+1 ≥ P + n − 1. In particular, the lurked objects at h∗n are
{xj1 , . . . , xjP , xk1 , . . . , xkn−1}. Since there is a tie in »n, there are two active non-lurker roles
at h∗n, and both of these roles have been offered to clinch xi at h∗n. Let s be the role that
moves at h∗n, and s′ be the other active non-lurker that does not move at h∗n.

Case 1: xkn is the next lurked object along the initial passing path of the
game form. Since xkn is the next lurked object along the initial passing path, it must be

46



i that moves at h∗n and clinches xi, i.e., σn(s) = i. 43 Further, we have h∗n ⊊ h∗n+1. To see
this, note that if not, then h∗n+1 ⊆ h

∗
n, and xkn is not lurked at h∗n+1. Thus, it cannot be a

lurked object that is clinched at h∗n+1, because this would imply that h∗n+1 is the terminating
history (Lemma 12), which contradicts that xkn becomes lurked along the initial passing
path. So, the object clinched at h∗n+1 must be unlurked, and so the set of lurked objects
is {xj1 , . . . , xjP , xk1 , . . . , xkn̄−1}, where xkn̄ is the unlurked object that is clinched, and n̄ ≤ n,
which follows because h∗n+1 ⊆ h∗n. But then, xkn̄ is offered to an active non-lurker at h∗n+1,
which contradicts that it is the next lurked object along the initial passing path (Remark
3). Therefore, h∗n ⊊ h∗n+1.

Since xkn is the next lurked object along the initial passing path, we must have xkn
becoming lurked at some h′ such that h∗n ⊊ h′ ⊆ h∗n+1. But, notice that there is still some role
r such that, at h′, r is an active non-lurker, and xi ∈ C

⊊
r (h′). Thus, xi cannot be the next

lurked object along the initial passing path. Therefore, for i to be ranked immediately after
kn in »n+1, she must clinch xi while it is unlurked, either at h∗n+1, or in the resulting step 1
assignment chain of the coding algorithm.

We next claim that in Γn+1, σ−1
n+1(i) ≠ s, s′. To see this, first note that if σ−1

n+1(i) = s,
then i has the same role in Γn and Γn+1, and thus would once again clinch at h∗n in Γn+1,
which contradicts h∗n ⊊ h∗n+1. Therefore, σ−1

n+1(i) ≠ s. Next, assume that σn+1(s′) = i. Notice
that role s′ cannot be the terminator role, by Lemma 11(iii) and the fact that xi ∈ Cs(h∗n)
and xi ∈ C

⊊
s′(h

∗
n). Thus, only objects that are unlurked at h∗n are possible for role s′, and

so if σn+1(s′) = i, since xi is i’s top unlurked object, she would clinch it at some history
h′ ⊊ h∗n ⊆ h∗n+1, which is a contradiction. Therefore, σ−1

n+1(i) ≠ s, s
′.

We showed above that s′ is not the terminator role. If s is the terminator role, then,
when i clinches at h∗n, we conclude that xi is her top possible object among all of those that
are available. This implies that i cannot be in a role that is a lurker at h∗n. So, we have
shown that in Γn+1, agent i is not a lurker at h∗n, nor is she is role s or s′. Thus, i is not active
at h∗n in Γn+1, and so there must be some agent ` ≠ j1, . . . , jP , k1, . . . , kn such that σ−1

n+1(`) = s

or s′. But then, since i is unlurked at h∗n+1, we have that xi ∈ C
⊊
` (h

∗
n+1), as desired.

If s is not the terminator role, we once again claim that i cannot be in a role that is a
lurker at h∗n. Indeed, if this were true, then some agent j who is receiving a lurked object is
not a lurker at h∗n. Therefore, this agent must be in the terminator role, and clinch at h∗n+1.
Since the terminator role is not s or s′, it is not yet active at h∗n, and so j is not active at
h∗n in Γn+1. Therefore, there must be some ` ≠ j1, . . . , jP , k1, . . . , kn such that σ−1(`) = s or s′,

43Agent kn cannot move at h∗n, because then xkn would have been offered to an active non-lurker at
h∗n, which contradicts that xkn is the next lurked object along the initial passing path. Nor can it be any
xj1 , . . . , xjP , xk1 , xkn−1 , because then they would be clinching a lurked object, and so h∗n is the terminating
history, which again contradicts that xkn is the next lurked object along the initial passing path.

47



and that is still active when j clinches at h∗n+1, which implies that xi ∈ C
⊊
` (h

∗
n+1), as desired.

Case 2: xkn is not the next lurked object along the initial passing path. By
Lemma 18, at h∗n, there are P + n − 1 lurked objects. This implies that both i and kn are
coded in step 1 of the coding algorithm for Γn, and thus that the first unlurked object that
is clinched is either xi or xkn .44 This gives rise to two subcases.

Case 2.1: xkn is the first unlurked object that is clinched in the coding algo-
rithm in Γn. In this case, σn(s′) = i, and there is some history h̃ ⊊ h∗n such that xkn ∈ Ci(h∗n).

Claim 5. The following are true: (a) h∗n−1 ⊊ h
∗
n+1 ⊊ h

∗
n and (b) agent kn clinches xkn at h∗n+1

in Γn+1, and xkn is unlurked at this history.

Proof of Claim 5. Part (a). First notice that h∗n−1 ⊊ h
∗
n+1 follows from Lemma 18. So, we

must show that h∗n+1 ⊊ h
∗
n. Towards a contradiction assume that h∗n ⊆ h∗n+1. Since h∗n−1 ⊊ h

∗
n,

we have h∗n−1 ⊊ h
∗
n ⊆ h

∗
n+1. Lemma 18 also implies that λ∗n = P + n − 1. Since i does not move

at h∗n in Γn, it must be some j1, . . . , jP , k1, . . . , kn that does. If a lurked object is clinched
at h∗n, then h∗n is the terminating history. It also implies that agent kn is a lurker for some
lurked object, and therefore in step 1 of the coding algorithm, some agent takes the object
kn lurks, and he ends the step by clinching xkn , which is unlurked. This means that xkn is
his favorite object that is unlurked at h∗n. Now, consider Γn+1, and note that h∗n ⊆ h∗n+1 and
h∗n being the terminating history implies that h∗n = h∗n+1. In Γn+1, the set of lurked objects is
the same as in Γn, so xkn is again the first unlurked object that is clinched in step 1 of the
coding algorithm. But, since h∗n = h∗n+1, there is again an agent in role s′ who is an active
non-lurker at h∗n+1, and so this agent would once again tie with kn in »n+1, a contradiction.
Therefore, it must be that kn is the agent that moves at h∗n in Γn, which means that xkn has
been offered to both active non-lurker roles at h∗n. Since we assumed that h∗n ⊆ h∗n+1, it is
impossible for kn to be ranked nth strictly, without ties, in »n+1,45 which is a contradiction.
Thus, we have shown that h∗n+1 ⊊ h

∗
n, which is part (a).

Part (b). Part (a) plus Lemma 18 implies that λ∗n+1 = P +n− 1. Additionally, h∗n+1 ⊊ h
∗
n

means that h∗n+1 is not the terminating history, so it must be an unlurked object that is
clinched there. Thus, since kn is ordered (P + n)th without ties, it must be that kn clinches
xkn at h∗n+1, and xkn is unlurked. ∎

By Lemma 18, the agent that moves at h∗n−1 must be agent i, and therefore, at h∗n−1, there
are two active non-lurker roles that both have been offered xi. Let the role that moves at
h∗n−1 be denoted r, and the other active non-lurker at h∗n−1 be denoted r′. Thus, by definition,

44Note that this does not necessarily mean that the object clinched at h∗n is xi or xkn .
45Note that xkn cannot be the next lurked object, so, there must be no newly lurked objects at h∗n+1

(Remark 3). If kn clinches at h∗n+1, she would tie with the other active non-lurker. If some other agent
clinches at h∗n+1, then either this agent is ranked strictly ahead of kn, or she ties with kn, which again is a
contradiction.

48



σn−1(r) = i.
We claim that in Γn+1, i cannot be active at h∗n−1. At h∗n−1, there are P + n − 2 active

lurker roles, and two active non-lurker roles, r and r′. First, it is clear that σn+1(r) ≠ i,
because otherwise i is in the same role in Γn−1 and Γn+1, and so would clinch at h∗n−1 in Γn+1,
which contradicts h∗n−1 ⊊ h∗n+1 from Claim 5. Second, assume that in Γn+1, agent i is in a
lurker role for a lurked object at h∗n−1, say y. By part (b) of Claim 5, agent kn clinches an
unlurked object at h∗n+1, and so all lurkers are immediately assigned to their lurked objects,
which means that i would receive y which is a contradiction.

It remains to rule out that σ−1
n+1(i) = r

′. By construction, xi ∈ Cr(h∗n−1), where xi ∈ Cr′(h̃)
for some h̃ ⊊ h∗n−1. This implies that role r′ cannot be the the terminator role, by Lemma
11(iii), and the fact that xi ∈ Cr(h∗n−1). Since role r′ is not the terminator role, only unlukred
objects are possible for role r′, by Lemma 11(iv). As xi is agent i’s most preferred unlurked
object, by greedy strategies, she would clinch at h̃, which is a contradiction. Therefore, i is
not active at h∗n−1 in Γn+1.

We also claim that i is not active at h∗n−1 in Γn, either. The arguments are the same as
above for Γn+1, except for the case in which i lurks some lurked object at h∗n−1. This is ruled
out by the fact that σn(s′) = i, and s′ is a non-lurker at h∗n−1.

Next, we claim that σn+1(s) ≠ i. To see this, recall that σn(s′) = i, and, as we showed, i
is not active at h∗n−1 in Γn or Γn+1. This means that s′ ≠ r, r′, or in other words, s′ is a role
that becomes active after h∗n−1. Thus, we must have s = r or r′, and so role s is active at
h∗n−1, which implies that σn+1(s) ≠ i.

Next, we claim that σn+1(s′) = kn. Indeed, since h∗n−1 ⊊ h
∗
n+1 ⊊ h

∗
n and kn moves at h∗n+1,

kn must be in role either s or s′. If σn+1(s) = kn, then, since she does not tie in »n+1, she
must clinch xkn at some history h′ such that h∗n−1 ⊊ h

′ ⊊ ĥ, where ĥ is the history at which
role s′ is offered to clinch xkn . This implies that σn(s) ≠ kn, or else in Γn, she would also
clinch at h′. So, in Γn, σn(s) = kn′ for some n′ < n, and kn is in the lurker role for some
object xkn̄ . The former implies that h∗n is the terminating history, while the latter implies
that kn strictly prefers xkn̄ to xkn . But then, since σn+1(s) = kn, agent kn is in the terminator
role in Γn+1, and thus xkn̄ is a possible outcome for her, she would not choose to clinch xkn
first at h∗n+1, a contradiction. Therefore, σn+1(s′) = kn.

Concluding the argument for Case 2.1, because kn clinches an unlurked object at h∗n+1 in
Γn+1, all agents j1, . . . , jP , k1, . . . , kn−1 must be in the lurker role for their respective objects.
Therefore, none of them are in role s. As just shown, σn+1(s) ≠ kn or i, either. All of this
means that σn+1(s) = ` for some ` ≠ j1, . . . , jP , k1, . . . , kn, i, and in Γn+1, we have xi ∈ C

⊊
` (h

∗
n+1),

as desired.
Case 2.2: xi is the first unlurked object that is clinched in step 1 of the coding

49



algorithm in Γn. In this case, we have that σn(s′) = kn, and xi ∈ Cs′(h̃) for some h̃ ⊊ h∗n.
There are two further subcases:

Case 2.2.1: σn(s) ≠ i. In this subcase, σn(s) is one of j1, . . . , jP , k1, . . . , kn−1, and is
clinching a lurked object at h∗n. This implies that h∗n is the terminating history, and s is
the terminator role, which also means that we have h∗n−1 ⊊ h

∗
n+1 ⊆ h

∗
n. This combined with

Lemma 18 implies that there are P + n − 1 lurkers at h∗n, and the structure of »n+1 means
that xkn is the first unlurked object clinched in step 1 of Γn+1, and, at h∗n+1, xkn has not been
offered to the active non-lurker who does not move at h∗n+1.

We also claim that role s cannot be active at history h∗n−1. Indeed, since i clinches at h∗n−1

in Γn−1 and ties, we know that there are two active non-lurker roles, say r and r′, and they
both have been offered xi. If role s were one of these roles, then, since s is the terminator
role, Lemma 11 implies that xi ∉ Cs′(h̃), which is a contradiction. This implies that role s is
a role that becomes active after h∗n−1. Since there is only one new lurker between h∗n−1 and
h∗n+1, this further implies that role s′ must have been active at h∗n−1, and xi ∈ C

⊆
s′(h

∗
n−1).

We next claim that σn+1(s′) ≠ i. To see why this is true, notice that s′ is not the
terminator role (because that is role s). Thus, only unlurked objects are possible for role s′

(Lemma 11(iv)), and, since we know that xi is i’s favorite unlurked object, if she were in
role s′, she would clinch at h̃ ⊊ h∗n+1, a contradiction. Therefore, σn+1(s′) ≠ i.

Now, if it is one of the j1, . . . , jP , k1, . . . , kn−1 that moves at h∗n+1, then h∗n+1 is the ter-
minating history, and so h∗n+1 = h∗n. This implies that xi has been offered to the agent in
role σn+1(s′) (who is not coded in step 1). As we just showed that σn+1(s′) ≠ i, we have
σn+1(s′) = ` for some ` ≠ j1, . . . , jP , k1, . . . , kn, and xi ∈ C`(h∗n+1) in Γn+1, as desired.

Concluding subcase 2.2.1, assume that it is kn that moves at h∗n+1 in Γn+1. This means
that kn is in role s or s′ in Γn+1. Note that we cannot have σn+1(s′) = kn, because if this were
true, then kn has the same role in Γn as in Γn+1, and would pass at all histories in Γn+1, just
as she did in Γn. Therefore, σn+1(s) = kn. Again, as we know that σn+1(s′) ≠ i, we have that
σn+1(s′) = ` for some ` ≠ j1, . . . , jP , k1, . . . , kn, and xi ∈ C`(h∗n+1) in Γn+1, as desired.

Case 2.2.2: σn(s) = i. In this subcase, i clinches xi at h∗n. If h∗n ⊆ h∗n+1, then notice that
at h∗n in Γn+1, there are two active non-lurker roles, s and s′, that have been offered xi. We
claim that σ−1

n+1(i) ≠ s, s
′. First, it is clear that σn+1(s) ≠ i, as otherwise, i would clinch at

h∗n in Γn+1, just as she did in Γn. To see that σn+1(s′) ≠ i, notice that role s′ cannot be the
terminator role, by Lemma 11 and the fact that xi ∈ Cs(h∗n) and xi ∈ C

⊊
s′(h

∗
n). Thus, only

unlurked objects are possible for role s′, and so if σn+1(s′) = i, since xi is i’s top unlurked
object, she would clinch it at some history h′ ⊊ h∗n ⊆ h∗n+1, which is a contradiction. Therefore,
σ−1
n+1(i) ≠ s, s

′, and so there must be some ` ≠ j1, . . . , jP , k1, . . . , kn such that xi ∈ C`(h∗n+1), as
desired.

50



It remains to consider h∗n+1 ⊊ h
∗
n. Then, there are P +n−1 lurkers at h∗n+1, and, since h∗n+1

is not the terminating history, it must be agent kn that moves at h∗n+1. This also implies that
kn is in role s or s′. If σn+1(s′) = kn, then kn is in the same role in Γn+1 as in Γn, and would
pass at h∗n+1 in Γn+1 as she did in Γn,which is a contradiction. Therefore, σn+1(s) = kn.

We claim that role s is not an active at history h∗n−1. Indeed, notice that because i clinches
at h∗n−1 in Γn−1, we have that xi ∈ C⊆s (h∗n−1). This implies that role s is not the terminator
role, which follows by Lemma 11 and the fact that xi ∈ Cs′(h′) for some h′ ⊋ h∗n−1. This
implies that only unlurked objects are possible for role s when she is called to play. Thus, if
role s were an active non-lurker at history h∗n−1, then, in Γn, when σn(s) = i, agent i is offered
to clinch xi at some h′ ⊆ h∗n−1. Since we know that only unlurked objects are possible, and xi
is i’s top unlurked object, she would clinch at h′ ⊊ h∗n in Γn, which is a contradiction. Since
role s is not active at h∗n−1, there are two roles that are not s that are active non-lurkers
at h∗n−1 and such that both have been offered to clinch xi. At h∗n+1 in Γn+1, at least one of
these roles must still be active and not assigned to any agent j1, . . . , jP , k1, . . . , kn, i. Thus,
there must be some ` ≠ j1, . . . , jP , k1, . . . , kn, i such that ` is an active non-lurker that does
not move at h∗n+1 and xi ∈ C

⊊
` (h

∗
n+1), as desired. This concludes the analysis of subcase 2.2.2,

and hence of case 2.2.
The above shows that in all cases, there is some ` ≠ j1, . . . , jP , k1, . . . , kn, i such that `

is an active non-lurker that does not move at h∗n+1 and xi ∈ C
⊊
` (h

∗
n+1) in game Γn+1. Recall

that, by Lemma 18, λ∗n+1 ≥ P + n − 1. If λ∗n+1 > P + n − 1, then there are at least P + n lurked
objects at h∗n+1, and the only way i can be ranked in the (P + n + 1)th position in »n+1 is if
she is coded in the first step. Since there is some agent ` ≠ i such that xi ∈ C

⊊
` (h

∗
n+1), i can at

best tie with this agent. If λ∗n+1 = P + n − 1, then by the structure of »n+1, it must be agent
kn that clinches at h∗n+1, and there is no tie at the end of step 1. This means that ` is not
coded in step 1, and so the continuation game that begins step 2 of the coding algorithm
starts with agent ` being offered xi. Now, for i to be ranked immediately after kn, she must
be ordered first in step 2 of the coding algorithm, and for i to be ordered first without ties,
either she must lurk xi and it is the first lurked object, or i must clinch xi while there are
no lurked objects and before xi has not been offered to another active non-lurker. However,
neither of these can occur because ` begins the step 2 continuation game being offered xi.
Therefore, in »n+1, i must tie with some agent that we label kn+1. This completes the proof
of Lemma 15. ∎

Before proving Lemmas 16 and 17, we first state and prove Lemma 19, on which both
rely. To state the lemma, we introduce the following notation: define Q to be the step of
the coding algorithm in which i is coded in game Γn. Also, define hq∗n to be the history at
which the first object is clinched in step q of the coding algorithm for game Γn.

51



Lemma 19. Assume that there exists a sequence of role assignment functions Σ as defined
in the statement of Lemma 5, and such that n ≥ 2. If either (i) Q = 1, or (ii) Q ≥ 2 and at
h1∗
n , there is an agent ` that is an active nonlurker at h1∗

n that does not move at h1∗
n , and

xi ∈ C
⊊
` (h

1∗
n ), then, in »n+1, agent i must tie with some agent kn+1.

Proof of Lemma 19. We start with the following lemma.

Lemma 20. Consider two games ΓA and ΓB, with corresponding role assignment functions
σA and σB, and resulting agent orderings »A and »B. Assume that »A begins as {i, j} »A ⋯,
and »B begins as: j »B i⋯. Further, assume that in game ΓA, there is some history h where
j moves such that: (i) h ⊆ h∗A, (ii) xi ∈ Cj(h) (iii) xj ∉ C⊆j (h) (iv) xi, xj ∉ C⊆i (h). Then:

(a) If agent j clinches at h∗A in ΓA, then in ΓB, agent j clinches at h∗B ⊊ h∗A, and there is
some agent k ≠ i that is an active non-lurker at h∗B such that xi ∈ Ck(h∗B).

(b) In »B, agent i must tie with some other agent k.

Proof of Lemma 20. Let h∗A and h∗B be the first time an agent clinches in ΓA and ΓB.
Notice that by the structure of »A, at history h∗A, there are two active roles, and both are
nonlurkers at h∗A; label the roles s and s′, and, wlog, let σA(s) = i and σA(s′) = j. Using these
definitions, we can write the presumptions of the lemma as (ii) xi ∈ Cj(h) (iii) xj ∉ C⊆j (h)
(iv)xi, xj ∉ C⊆i (h). Also, notice that h ⊆ h∗A implies that there are no lurkers at h, and so the
only roles that may possibly be active at h are s and s′. Finally, since xi and xj tie for the
top ranking in »A, it must be that xi is i’s favorite object among all objects and xj is j’s
favorite object among all objects. Therefore, by greedy strategies, if at any history i is able
to clinch xi, she will do so, and the same for j and xj.

Part (a). The structure of »A implies that xj ∈ Cs(h′) for some h′ ⊊ h∗A. Now, consider
ΓB. The only way for j to be ranked first without ties is that σB(s) = j, and j clinches at
h∗B ⊊ h∗A.46 Let k ∶= σB(s′), and notice that, by the assumptions of the lemma, xj ∉ C⊆s (h),
and so h ⊊ h∗B, and therefore xi ∈ C

⊊
s′(h

∗
B). It is clear that k ≠ j. Further, k ≠ i because if

k = i, then xi ∈ Ci(h) in ΓB, and thus, i would clinch xi at h ⊊ h∗B in ΓB, which contradicts
that the first clinching in ΓB is j clinching at h∗B. Therefore, σB(s′) = k for some k ≠ i, j,
and k is an active non-lurker that does not move at h∗B such that xi ∈ Ck(h∗B) in ΓB.

Part (b). If j clinches at h∗A, ,then by part (a), there is an agent k such that xi ∈ C
⊊
k (h

∗
B)

and k is not coded in the coding step initiated at h∗B in ΓB. Let h∗∗B ⊋ h∗B be the history at
which the next clinching occurs in ΓB. Since k was offered xi in the previous coding step,
but is still active, at the initial history of the continuation game that begins step 2, k is
offered to clinch xi again (see Remark 2). Thus, xi cannot be the first lurked object on the

46The only other way for j to be ranked first without ties is that xj is the first lurked object; however,
this cannot obtain, because xj ∈ Cs(h′) at some history h′ where there are no lurkers.

52



initial passing path of the continuation game form (Remark 3), and so there must be no
lurked objects at h∗∗B . For i to be coded next, she must be active at h∗∗B , and since there are
no lurked objects, there are two active agents, i and k. If k clinches at h∗∗B , it is obvious that
i can at best tie; if i clinches at h∗∗B , i once again ties with k, because xi ∈ Ck(h∗∗B ).

The other possibility is that i clinches at h∗A, which implies that xi ∈ Cs′(h′) for some
h′ ⊊ h∗A. For j to be ranked first without ties in »B, at h∗B, either (a) there are lurkers, and
xj is the first lurked object or (b) there are no lurkers, j clinches xj, and xj has not been
offered to another non-lurker that is active at h∗B. There are 3 cases:

Case: σB(s′) = i. In this case, i would clinch xi at h and would be ranked first in »B,
which is a contradiction.47

Case: σB(s′) = j. Here, j is in the same role in both games, and therefore σB(s) = ` ≠ i,
which follows because if ` = i, then both j and i are in the same roles, and we would get the
same initial orderings for »A and »B, a contradiction. This implies that h∗B ⊋ h∗A, because if
h∗B ⊆ h∗A, then, since j is in the same role, she would clinch at h∗B in ΓA, a contradiction.48

Now, notice that because xi has been offered to both j and ` (weakly) prior to h∗A, xi cannot
be the first or second lurked object of the game. This means that, for i to be ranked second,
there can be at most one lurked object at h∗B, and if it exists it must be xj that is lurked.

If xj is lurked at h∗B, it must be by either j or `. If it is lurked by `, then xj must clinch
at h∗B, but, since there is only one lurker, this implies that ` must clinch an unlurked object,
and will be ranked second (possibly tied with i). If xj is lurked by j, then ` is still an active
non-lurker at h∗B such that xi ∈ C`(h∗B). If i clinches xi at h∗B, she will tie with `; if i does
not clinch, she can at best tie with ` (and may be ranked strictly lower). In either case, the
result holds.

The final case is that nothing is lurked at h∗B. This implies that xj clinches at h∗B, but
again, xi ∈ C`(h∗B). Therefore, at the initial history of the continuation game that begins
step 2 of the coding algorithm, xi is offered to agent `. Let h∗∗B be the first time an object is
clinched in this continuation game. Since xi is offered to ` at the initial history, xi cannot be
the first lurked object, and so, for i to be ranked first in this continuation game without ties,
she must clinch xi while it is unlurked and has not been offered to another active non-lurker.
But, we have just seen that xi is offered to ` at the initial history, and so this cannot hold.

Case: σB(s′) = `′ for some `′ ≠ i, j. First, notice that σB(s) = ` for some ` ≠ i. To
see this, assume that ` = i. Then, i is in the same role in ΓA and ΓB. This implies that
h∗B ⊊ h∗A, because if h∗A is reached in ΓB, i would clinch there, and be ranked above j. But,

47Note that xj has not been offered to any agent at h, by the presumptions of the lemma.
48The case h∗B = h∗A is ruled out because i moves at h∗A in ΓA, and this history is controlled by role s, not

s′.

53



h∗B ⊊ h∗A implies that j is not ranked first in »B (since she is not yet active at h∗B), which is
a contradiction.

If σB(s) = j, then for j to be ranked first in »B, either (a) xj is the first lurked object on
the path to h∗B or (b) there are no lurked objects at h∗B, j clinches xj at h∗B, and xj has not
been offered to another active non-lurker. Notice that h∗B ⊋ h,49 which implies that agent
xi ∈ C`′(h∗B). But, then it is impossible for i to be ranked immediately after j »B without
ties, which is a contradiction.

If σB(s) ≠ j, then roles s and s′ are assigned to agents ` and `′ in ΓB, neither of which
are j or i. So, for j to be ranked first without ties, xj must be the first lurked object (and
be lurked by either ` or `′), and j must clinch it at some h∗B ⊋ h∗A. For i to be ranked second
without ties in this case, there must be two lurked objects at h∗B,50 and xi must be the second
lurked object (after xj). But, at the history h′′ ⊋ h∗A where xj becomes lurked, one of agents
` or `′ is an active non-lurker who has been previously offered to clinch xi, and so xi cannot
be the next lurked object, a contradiction. ∎

Continuing with the proof of Lemma 19, first, considerQ = 1. Then, all agents j1, . . . , jP , k1, . . . , kn, i

are coded in step 1 of game Γn. By Remark 4, xj1 , . . . , xjP , xk1 , . . . , xkn−1 all become lurked
on the initial passing path of the game form, and further, since n ≥ 2, we can apply Lemma
15 to conclude that i ties in »n+1.

It remains to consider Q ≥ 2. Since we have assumed that P + 1 agents are coded in step
1, all agents jp have been coded in the first step, and so the agent who is coded first in step
Q of the coding algorithm of Γn is kn̄ for some n̄ < n. So, the subcoding of »n starting from
step Q is:

kn̄ »n kn̄+1 »n ⋯ »n kn−1 »n {i, kn}.

Consider the sequence of games Γn̄,Γn̄+1 . . . ,Γn,Γn+1. Notice that the codings for all of
these games are exactly the same, up to agent kn̄−1. Therefore, by Lemma 4, all agents
j1, . . . , jP , k1, . . . , kn̄−1 are in the same roles in all of these games. In particular, agent kn̄−1

is the last agent coded in step Q − 1 in all of these games, and the initial history of the
continuation game that begins step Q is the also the same in all of these games; label this
history hQ∅ . Now, applying the coding algorithm to the sequence of continuation games of

49In case (a), this follows because there are no lurkers at h; in case (b), it follows from the assumption of
the lemma that xj ∉ C⊆s (h).

50Since j clinches at h∗B , if there is no other lurked object at h∗B , the only active agents are `, `′, and j,
and so one of ` or `′ will be ranked above i in »B , which is a contradiction.

54



Γn̄, . . . ,Γn,Γn+1 starting from history hQ∅ , we get the sub-codings:

{i, kn̄} »n̄ ⋯

kn̄ »n̄+1 {i, kn̄+1} »n̄+1 ⋯

⋮

kn̄ »n kn̄+1 »n ⋯ »n kn−1 »n {i, kn} »n ⋯.

kn̄ »n+1 kn̄+1 »n+1 ⋯ »n+1 kn »n+1 i⋯

There are two cases.
Case 1: n̄ < n. In this case, we can apply Lemma 15 to the game form starting from

hQ∅ to conclude that i must tie in »n+1. To see this, simply note that upon reindexing to
start from hQ∅ rather than h∅, the condition “n ≥ 2” becomes “n ≥ n̄+1′′. Then, we have that
xkn̄ , . . . , xkn−1 all become lurked on the initial passing path of the game form starting from
hQ∅ , which follows from Remark 4, n ≥ n̄+1, and the fact that i is coded in the initial step of
the continuation game of Γn starting from hQ∅ . Thus, all of the conditions of Lemma 15 are
satisfied.

Case 2: n̄ = n. In this case, the games we are concerned with are Γn and Γn+1, with
subcodings:

{i, kn} »n ⋯ (C)

kn »n+1 i⋯.

Notice that here, we can no longer apply Lemma 15, since we do not have at least two games
in which i ties in the sequence. Our goal is to apply Lemma 20 instead, but to do so, we
must show that the conditions (i)-(iv) of Lemma 20 are satisfied at hQ∅ .

For each each coding step q = 1, . . . ,Q of game Γn, let hq∗n denote history at which the first
object is clinched in the qth coding step, and let h∅qn denote the initial history that begins
the continuation game for the next step, after all of the agents in step q − 1 are coded (in
particular, h∅1

n = h∅, and h1∗
n = h∗n in our earlier notation). In »n, all agents who are coded

in steps q < Q are ranked strictly, without ties. Let knq denote the agent who is coded last
in the qth step. With this notation, the subcoding from the qth step is:

knq−1+1 »n knq−1+1 »n ⋯ »n knq ,

where we define n0 = 0. It is possible that knq−1+1 = knq , in which case only one agent is coded
in step q. Since there are no ties, agent knq ends the coding step by clinching an unlurked

55



object that has not been offered to another non-lurker who is active at hq∗n .

Claim 6. For all q < Q, there is an agent ` ≠ k1, . . . , knq , i such that ` is an active nonlurker
at hq∗n that does not move at hq∗n , and xi ∈ C

⊊
` (h

q∗
n ).

Claim 6 (whose proof can be found immediately after the proof of this lemma) implies
that when we reach step Q in Γn, at the initial history of the continuation game h∅Qn that
begins this step, there is some agent ` ≠ k1, . . . , kn−1, i such that xi ∈ C`(h

∅Q
n ). Since the

subcodings for »n in this step begin with a tie between i and kn (see Equation C), it must
be that ` = kn. Finally, we apply Lemma 20 by setting A = n, B = n+ 1, h = h∅Qn , j = kn, and
i = i to conclude that i must tie in »n+1.51 ∎

Proof of Claim 6. By the supposition of the lemma, at h1∗
n , there is an agent ` that is

an active nonlurker at h1∗
n that does not move at h1∗

n , and xi ∈ C
⊊
` (h

1∗
n ). It is clear that ` is

not coded (since there is no tie in step 1), and so ` ≠ k1, . . . , kn1 . To see that ` ≠ i, note that
if ` = i , then step 2 begins with agent i being offered to clinch xi. If i is not coded in step
2, then step 3 begins with i being offered xi, etc.. The same continues up to and including
step Q, in which i is coded. Since i is coded first in step Q (tying with kn) xi is her top
object among those that remain at the beginning of step Q. Since xi ∈ Ci(h

(Q−1)∗
n ), agent

i begins step Q by being offered to clinch xi at the initial history of this step. Since xi is
her top remaining object, she would clinch it, and thus would not tie with kn, which is a
contradiction. Thus, the statement holds for q = 1.

Now, consider step q = 2 of game Γn, which begins at h∅2
n and produces the subcoding:

kn1+1 »n kn1+2 »n ⋯ »n kn2 »n .

Case 1: n2 = n1 + 1. Then only one agent, agent kn1+1, is coded in step 2 of game Γn,
which begins with the continuation game that starts at history h∅2

n . The result from step 1
implies that at h∅2

n , some agent ` ≠ k1, . . . , kn1 , i moves and xi ∈ C`(h∅2
n ).

Since kn1+1 is the only agent coded in step 2 of Γn, and does not tie, she must clinch
xkn1+1

at h2∗
n in Γn while it is unlurked, and before it is offered to another active non-lurker.

Now, since »n and »n1+1 are the same up til agent kn1 , Lemma 4 implies that h∅2
n = h∅2

n1+1
;

for shorthand, define h∅2 ∶=h∅2
n = h∅2

n1+1
. The second step continuation games of Γn1+1 and Γn

51Condition (i) of Lemma 20 is immediate. For condition (ii) was just shown. Condition (iii) holds because,
if xkn ∈ Ckn(h

∅Q
n ), then kn would immediately clinch it at h∅n

n , and would not tie with i in »n. Condition
(iv) is also immediate, as i has not yet been called to move at h∅Q

n .

56



both start from h∅2 , and lead to the initial subcodings:

{i, kn1+1} »n1+1 ⋯

kn1+1 »n ⋯

Let role s be the role that moves at h∅2 , and role s′ be the second role that becomes
active on the initial passing path of the game form starting from h∅2 . These two roles exist
because there is an initial tie in »n1+1, and in Γn1+1, s and s′ are assigned to kn1+1 and i,
in some manner. If σn1+1(s) = i, then i would clinch at h∅2 in Γn1+1, and would not tie, a
contradiction. Therefore, σn1+1(s) = kn1+1, which implies that xkn1+1

∉ Ckn1+1
(h∅2

n ); indeed, if
this were true, then kn1+1 would clinch it at h∅2

n1+1
in Γn1+1, which contradicts that kn1+1 ties

in »n1+1.
Now, if σn(s) = kn1+1, then kn1+1 is in the same role in both games, and so it must be i

that clinches at h2∗
n1+1

, which means that xi ∈ Cs′(h2∗
n1+1

).52 It also means that h2∗
n ⊋ h2∗

n1+1
,

and that σn(s′) ≠ i, and so, there exists some agent `′ ≠ i such that in Γn, xi ∈ C`′(h2∗
n ),

which is what we wanted to show.
Last, if σn(s) ≠ kn1+1, then σn(s′) = kn1+1. Thus, in this case, there is some agent other

agent ` such that σn(s) = `. Again, ` ≠ i, because xi ∈ Cs(h∅2
n ). Thus, when kn1+1 clinches at

h2∗
n in Γn, we have xi ∈ C

⊊
` (h

2∗
n ), as desired.

Case 2: n2 > n1 + 1. Consider games Γn1+1,Γn1+2, . . . ,Γn and notice that the codings
for all of these games are equivalent up to agent kn1 . Therefore, by Lemma 4, all agents
k1, . . . , kn1 are in the same roles in all of these games, and so these agents will take the same
actions, which implies that, for each of these games, step 2 of the coding algorithm begins
at the same history of the game form, which we denote h∅2 .

Consider the continuation game form starting at h∅2 , and recall that h2∗
n′ is the first

time an object is clinched in step 2 of game Γn′ , which is also the first time an object is
clinched in step 1 of the continuation game beginning at h∅2 . Notice that by the structure
of »n, the objects xkn1+1

, . . . , xkn2−1
are lurked at h2∗

n in Γn, while xkn2 is not, i.e., objects
xkn1+1

, . . . , xkn2−1
are the first lurked objects (in order) along the initial passing path of the

game form, beginning at h∅2 .
52If kn1+1 clinched first in Γn1+1 and Γn, and is in the same role, then the subcodings »n1+1 and »n would

be the same up to kn1+1, which is a contradiction.

57



The subcodings of games Γn1+1,Γn1+2, . . . ,Γn2+1 beginning at history h∅2 are:

{i, kn1+1} »n1+1 ⋯

⋮

kn1+1 »n2 kn1+2 »n2 ⋯ »n2 kn2−1 »n2 {i, kn2} »n2 ⋯.

kn1+1 »n2+1 kn1+2 »n2+1 ⋯ »n2+1 kn2 »n2+1 {i, kn2+1}⋯

By Lemma 15 applied to the continuation game and subcodings beginning at h∅2 , in Γn2+1,
at h2∗

n2+1
, there is an agent ` such that ` is an active non-lurker at h2∗

n2+1
that does not move

at h2∗
n2+1

and xi ∈ C
⊊
` (h

2∗
n2+1

). Since »n is equivalent to »n2+1 up to agent kn2 , and agent kn2

is the last agent in a coding step of game Γn, we have that h2∗
n = h2∗

n2+1
, by Lemma 4. This

implies that at h2∗
n , there is an agent ` that is an active non-lurker at h2∗

n that does not move
at h2∗

n and xi ∈ C
⊊
` (h

2∗
n ) (which may or may not be the same such agent in Γn2+1, depending

on the role assignment functions).
It remains to show that ` ≠ k1, . . . , kn2 , i. It is clear that ` ≠ k1, . . . , kn2 , since all of these

agents are coded by the end of step 2 in Γn, while agent ` is not. If ` = i, step 3 begins with
agent i being offered to clinch xi. If i is not coded in step 3, then i continues to be active in
step 4, which begins with i being offered xi, etc.. The same continues up to and including
step Q, in which i is coded. Since i is coded first in step Q (tying with kn) xi is her top
object among those that remain at the beginning of step Q. Since xi ∈ Ci(h

(Q−1)∗
n ), agent

i begins step Q by being offered to clinch xi at the initial history of this step. Since xi is
her top remaining object, she would clinch it, and thus would not tie with kn, which is a
contradiction. Therefore, ` ≠ i. This completes the result for q = 2.

We then just repeat the arguments for the q = 2 case for all q = 3,4, . . . ,Q − 1, which
completes the proof of Lemma 19. ∎

Proof of Lemma 16. We begin by showing the result for n = 1, as part of the following
claim.

Claim 7. Assume that there exist σ0 and σ1 such that:

j1⋯jP »0 i »0 k1 »0 ⋯

j1⋯jP »1 {i, k1} »1 ⋯.

Then:
(a) We have h∗0 ⊊ h∗1, and the agent that moves at h∗0 in Γ0 is agent i.
(b) If there exists a σ2 such that j1⋯jP »2 k1 »2 i⋯, then h∗0 ⊊ h∗2. Further, in »2, agent i

must tie with some other agent k2.

58



(c) If xk1 is not the (P + 1)th lurked object on the initial passing path, then in Γ2, agent
k1 clinches at h∗2 ⊊ h∗1. Further, at h∗2, there is an active non-lurker ` ≠ j1, . . . , jP , i, k1 such
that xi ∈ C

⊊
k2
(h∗2).

The proof of this claim can be found at the end of the proof of the lemma. Now, consider
a sequence Σ such that n ≥ 2. We will show that i must tie in »n+1.

In game Γn, i is coded in some step of the coding algorithm with some subset of the
agents j1 . . . , jP , k1, . . . , kn−1. Let Q be the step number in which i is coded in game Γn. The
goal is to apply Lemma 19, which the following claim allows us to do.

Claim 8. If Q ≥ 2, then at h∗n, there is an agent ` that is an active non-lurker at h∗n that does
not move at h∗n and xi ∈ C

⊊
` (h

∗
n).

The proof of this claim is found below, immediately after the proof of Claim 7. Given
Claim 8, we can apply Lemma 19 to conclude that i must tie in »n+1, which completes the
proof of Lemma 16. ∎

Proof of Claim 7. Since we assume there are at least P lurkers at h∗1, by the structure
of »1, there are exactly P lurkers at h∗1. This implies that the first P lurked objects are
xj1 , . . . , xjP . Additionally, objects xi and xk1 are unlurked at h∗1, and so xi and xk1 are agent
i and k1’s favorite objects among the set of those that are unlurked at h∗1, respectively.

Part (a). Suppose not, then the passing structure of histories implies that h∗1 ⊆ h∗0.
Notice that at h∗1, there must be two active non-lurker roles.

Case 1: P = 0. In this case, there are no agents jp, so at h∗1, there are exactly two active
roles, label them s and s′, and wlog, let σ1(s) = i and σ1(s′) = k1. If i clinches at h∗1 in Γ1,
then xi ∈ C

⊊
s′(h

∗
1) and xi ∈ Cs(h∗1). Now, for i to be ranked first without ties in »0 is either (i)

xi is the first lurked object of the game or (ii) i clinches xi first as an unlurked object, and
it has not been offered to another active non-lurker. However, h∗1 ⊆ h∗0 implies that neither
(i) nor (ii) can obtain, as xi has been offered to both active non-lurkers at h∗1, which is a
contradiction.

If k1 clinches at h∗1 in Γ1, then xk1 ∈ C
⊊
s (h∗1) and xk1 ∈ C

⊆
s′(h

∗
1). Now, h∗1 ⊆ h∗0 implies that

in Γ0, σ−1
0 (k1) ≠ s, s′.53 Since k1 is not in either of these roles, there is some ` ≠ i, k1 that is

active at h∗1 in Γ0 and is such that xi ∈ C⊆` (h
∗
1). Notice also that since xk1 has been offered

to both active agents at h∗1, it cannot be the second lurked object along the initial passing
path (Remark 3), and so for k1 to be ranked second, there can be at most 3 active agents
at h∗0, in particular agents i, k1, and `. If k1 moves at h∗0, i must be lurking xi, and k1 will
tie with agent `. If ` moves at h∗0, it is clear k1 will not be ranked second without ties. If

53If σ−10 (k1) = s, then k1 would clinch at some h′ ⊊ h∗1; if σ
−1
0 (k1) = s

′, then k1 is in the same role in Γ0

and Γ1, and thus would clinch at h∗0 = h
∗

1, and would once again tie for first in »0.

59



i moves at h∗0, then there must be no lurked objects at h∗0.54 But, since h∗1 ⊆ h∗0, we have
xk1 ∈ C`(h

∗
0), and so, since ` was not coded in the first step, she begins the second step by

being offered xk1 at the initial history of the continuation game. Thus, it is impossible for
k1 to be ranked first without ties in this continuation game, a contradiction.

Case 2: P ≥ 1. In this case, there is at least one lurker jp at h∗1. Further, at h∗1, there
are P active lurker roles for the objects xj1 , . . . , xjP , and 2 active non-lurkers roles; label
the role that moves at h∗1 as s, and the other active nonlurker at h∗1 as s′. There are three
subcases, depending on who is in role s.

Subcase 2.1. σ1(s) = i. In this case, we have σ1(s′) = k1 and xi ∈ C
⊊
s′(h

∗
1). We first

claim that i cannot be active at h∗1 in Γ0. First, notice that i cannot move at h∗1 in Γ0,
because if she did, she would choose the same action at h∗1 in both games, and would tie in
»0, just as she did in »1. So, σ0(s) ≠ i. Next, assume i is a lurker at h∗1 in Γ0, for some lurked
object xj1 , . . . , xjP . Note that xi cannot be the next object lurked along the initial passing
path because it has been offered to (both) active non-lurkers at h∗1, so at h∗0, there must be
no newly lurked objects, and roles s and s′ are still active non-lurkers. The first coding of
step Γ0 thus ends when i clinches xi, which is unlurked. But, because h∗1 ⊆ h∗0, xi has been
offered to both role s and s′ at h∗0, and one of these is an active non-lurker who does not
move at h∗0, and so i would tie with this agent in »0.

Second, assume that σ0(s′) = i. Then, notice that xi ∈ Cs′(h′) for some h′ ⊊ h∗1. We claim
that i would clinch xi at this history. Indeed, at h′, role s′ is an active non-lurker that is not
the terminator.55 This means that only unlurked objects are possible for the agent in this
role, and since xi is i’s favorite unlurked object, she will clinch it at h′, by greedy strategies.
Therefore, i is not active at h∗1 in Γ0.

Now, i is not active at h∗1 in Γ0, but there are two active non-lurkers, those in roles s and
s′, and both of these have been offered xi. Thus, xi cannot be the next lurked object along
the initial passing path of the game form, and so there can be no newly lurked objects at
h∗0. But then, i is not active at h∗0 (since no new agent can become active unless something
else becomes lurked), and so i is not coded in this step, which contradicts that she is ranked
(P + 1)th in »0.

Subcase 2.2: σ1(s) = k1. In this case, we have xk1 ∈ Cs′(h
′) for some h′ ⊊ h∗1 ⊆ h∗0 and

xk1 ∈ Cs(h
∗
1). This implies that xk1 cannot be either of the next two lurked objects on the

initial passing path of the game form (if they exist). Since k1 is ordered immediately after i
54If there were, it must be xi. It cannot be lurked by k1, since this would mean xi is her top object, which

is a contradiction. So, it must be lurked by some ` ≠ i, k1, and so ` will be ranked ahead of or tie with k1 in
»1.

55This follows from Lemma 11. If this role were the terminator, then role s could not be offered xi at
h∗1 ⊋ h

′.

60



in »0 and k1 does not tie, there can be at most one newly lurked object at h∗0, and it must
be xi.

We next claim that k1 cannot be active at h∗1 in Γ0. It is clear that σ0(s) ≠ k1, because
otherwise k1 would clinch at h∗1 in Γ0, and once again tie in »0. We also have that σ0(s′) ≠ k1.
To see why, notice that s′ is not the terminator role (see footnote 55). So, only unlurked
objects are possible for the agent in this role, and thus, if k1 was in this role, she would clinch
xk1 at h′ ⊊ h∗0, since it is her favorite unlurked object. Last, if k1 lurks some object xjp at
h∗1, then she strictly prefers xjp to xk1 . It then must be some agent jp′ that moves at h∗0 and
clinches a lurked object xjp′ . This means that jp′ is in the terminator role. We claim that
σ−1

0 (jp′) ≠ s, s′. We know (see footnote 55) that s′ is not the terminator role, so σ−1
0 (jp′) ≠ s′.

If σ0(s) = jp′ , then s is the terminator role. But, this contradicts that k1 clinched xk1 first
at h∗1 in Γ1, since in that game she was in the terminator role and so xjp is possible for her,
and she strictly prefers it. Therefore, in Γ0, jp′ is in some role s′′ that was not active at h∗1.
This implies that one of s or s′ is still active at h∗0 in Γ0, and whoever it is, this agent has
been offered xk1 prior to h∗0. So, k1 would tie with this agent in »0, a contradiction.

So, k1 is not active at h∗1 in Γ0. So, there is some agent ` ≠ j1, . . . , jP , i, k1 that is active
at h∗1 in Γ0. This agent cannot be a lurker at h∗0, since if she were, she would necessarily be
coded in step 1, and, as xk1 is not lurked at h∗0, k1 could at best tie with her. Thus, σ−1

0 (`) = s

or s′, and no matter which, we have xk1 ∈ C`(h
∗
1). If xk1 is clinched in step 1, then k1 can at

best tie with `. If k1 is not coded in step 1, then in at the start of the continuation game for
step 2, ` is offered xk1 . But, if this is the case, then k1 cannot be ordered first without ties
in step 2, which contradicts the definition of »0.

Subcase 2.3: σ1(s) = jp for some p = 1, . . . , P . In this case, agent jp is clinching a
lurked object at h∗1, and so h∗1 is the terminating history. Then, h∗1 ⊆ h∗0 implies that h∗1 = h∗0.
Thus, in Γ0, xi is the first (and only) unlurked object clinched in step 1, and so xi ∉ C

⊊
s′(h

∗
1).

So, because there is a tie in Γ1, it must be that xk1 ∈ C
⊊
s′(h

∗
1).

Next, we claim that in Γ0, k1 is not active at h∗1. Indeed, k1 is not in role s (as that is
occupied by jp). She also cannot be a lurker, because she is not coded in step 1 (which ends
with i). Finally, consider role s′. Notice that s′ is not the terminator role (because that is
role s), and so, if k1 were in role s′, she would clinch xk1 at some history h′ ⊊ h∗1 at which it
was offered to her, a contradiction.

Therefore, there is some ` ≠ j1, . . . , jP , i, k1 that is such that σ0(s′) = ` and xk1 ∈ C`(h
∗
1).

Since ` is not coded in step 1, she begins the continuation game for step 2 by being offered
xk1 . Thus, k1 cannot be ordered first in step 2 without ties, which is a contradiction.

The above shows that h∗0 ⊊ h∗1. To finish the proof of part (a), we must show that agent
i moves at h∗0 in Γ0. Notice that h∗0 ⊊ h∗1 and the structure of »1 implies there can be at

61



most P lurkers at h∗0. First, if there are no lurkers (P = 0) at h∗0, then, it is clear that i must
move at h∗0, as that is the only way she can be ranked first without ties. Now, presume that
P > 0. If it is some jp that moves at h∗0, then jp clinches a lurked object xjp , which implies
that h∗0 is the terminating history, which contradicts h∗0 ⊊ h∗1. Therefore, no agent j1, . . . , jP
can move at h∗0. Since there can be at most P lurkers at h∗0, given that i is ranked (P + 1)th

without tying, the only other possibility is that it is agent i that moves at h∗0 and clinches
xi.

Part (b). We first show that h∗0 ⊊ h∗2. By part (a), h∗0 ⊊ h∗1. This means that agent i
cannot move at h∗0 in Γ1. Nor can any potential agent jp, because if they did, they would
be clinching a lurked object, which means h∗0 is the terminating history, which contradicts
h∗0 ⊊ h

∗
1. Therefore, it must be k1 that moves at h∗0 in Γ1.

By way of contradiction suppose that h∗0 ⊊ h∗2 fails; because of the passing structure of
this histories, it means that h∗2 ⊆ h∗0. The structure of »2 implies that k1 clinches at h∗2 in
Γ2, which also means that h∗2 and h∗0 are controlled by different roles, and further h∗2 ⊊ h∗0.56

So, in Γ0, it must be some agent ` ≠ j1, . . . , jP , i, k1 that moves at h∗2. But then, we have
xk1 ∈ C`(h

∗
0), so at the initial history of the continuation game that begins step 2, agent `

is offered xk1 , and so k1 cannot be ordered first in step 2, which is a contradiction to the
definition of Γ0. Therefore, h∗0 ⊊ h∗2.

Thus, we have h∗0 ⊊ h∗1, h∗2, and so agent i does not move at h∗0 in Γ1 or Γ2.
Case 1: Agent k1 moves at h∗0 in Γ2. Here, k1 is in the same role as in Γ1, and so

h∗1 ⊊ h∗2. This implies that i must clinch at h∗1 in Γ1, and so i does not move at h∗1 in Γ2.
If some jp moves at h∗1 in Γ2, then this agent must also clinch at h∗2, and she must clinch a
lurked object. This means that i must be a lurker for some xjp′ , and so she strictly prefers
xjp′ to xi. But then, the agent that moves at h∗1 is in the terminator role, and so in Γ1,
i is in the terminator role, and since she clinches xi at h∗1 , this implies that xi is her top
object (lurked or unlurked) by Lemma 11(v), which is a contradiction. So, it must be some
` ≠ j1, . . . , jP , i, k1 that moves at h∗1 in Γ2, and so xi ∈ C

⊊
` (h

∗
2) in Γ2. Since ` is not coded in

step 1, she is offered xi at the initial history of the continuation game that begins step 2.
Therefore, i cannot be ranked first without ties in this continuation game.

Case 2: Some agent j1, . . . , jP moves at h∗0 in Γ2. This agent, say jp, must be the
one clinching at h∗2 (since jp is not a lurker at h∗0, but ultimately receives a lurked object),
and she must clinch a lurked object. This implies that the agent who moves at h∗0 is in the
terminator role, and that h∗2 is the terminating history, so h∗1 ⊆ h∗2. Let r be the other role
that is active at h∗1. Since there is a tie in »1, this role must be such that either xi ∈ C⊆r (h∗1) or

56If they were the same role, then k1 is in this role in Γ1, and would clinch at h∗2 in Γ1, which is a
contradiction.

62



xk1 ∈ C
⊆
r (h

∗
1). In the latter subcase, xk1 cannot be the next lurked object along the passing

path (from h∗1), and so there must be no newly lurked objects at h∗2. Next, notice that
σ2(r) ≠ k1, because otherwise, k1 would clinch xk1 at the history h′ ⊊ h∗1 where it was offered
in Γ2. Thus, k1 can at best tie with the agent σ2(r), which is a contradiction.

For the subcase xi ∈ C⊆r (h∗1), if σ2(r) = k1, then there is some agent ` ≠ j1, . . . , jP , k1 who
is a lurker for some xj1 , . . . , xjP . We also have ` ≠ i. This is because the agent who moves at
h∗0 is in the terminator role, and so in Γ0, i is in this role, and since she clinches, xi is her top
available object (lurked or unlurked), and therefore i cannot lurk any of the xjp ’s. Therefore,
agent ` will be ranked ahead of i in »2, a contradiction.57 We also cannot have σ2(r) = i,
because i would clinch xi at the history h′ ⊊ h∗1 at which she was offered xi. Thus, σ2(r) = `

for some ` ≠ j1, . . . , jP , i, k1. Agent ` is not coded in step 1, and thus, she is offered xi at the
initial history of the continuation game that begins step 2, and so i cannot be ranked first
without tying in step 2.

Part (c). If xk1 is not the (P + 1)th lurked object, then, because k1 is ordered without
tying in »2, at h∗2, k1 must clinch xk1 , and it has not been offered to another active non-lurker.
Notice also that h∗0 ⊊ h∗2 implies that i does not move at h∗0 in Γ1 or Γ2, and that k1 moves at
h∗0 in Γ1. If k1 moves at h∗0 in Γ2, then she is in the same role in both games, and so h∗1 ⊊ h∗2.
This also means that i moves at h∗1 in Γ1 (because if it was k1, then xk1 is offered to both
active roles at h∗1, and so in Γ2, k1 would clinch at some h′ ⊊ h∗2). Thus, xi has been offered
to both active non-lurker roles at h∗1. This implies that i cannot be active at h∗1 in Γ2, and
so there is some ` ≠ j1, . . . , jP , i, k1 such that xi ∈ C`(h∗2) in Γ2. If k1 does not move at h∗0 in
Γ2, then it is some ` ≠ j1, . . . , jP , i, k1 that moves at h∗0. In either case, we have xi ∈ C

⊊
` (h

∗
2)

in Γ2. ∎

Proof of Claim 8. (See above for the statement of the claim).Since it is without loss of
generality to assume that there are at least P lurkers at h∗n, there are two cases. Recall that
k1 is ranked strictly, without ties, in »n.

Case 1: There are exactly P lurkers at h∗n. In this case, k1 is the last agent coded
in step 1 of Γn. Consider game Γ2, and notice that »n=»2 up to agent k1. Since agent k1 is
the last agent in a coding step, by Lemma 4, all agents j1, . . . , jP , k1 are in the same roles
in Γ2 and Γn, and h∗n = h∗2. Further, notice that xk1 is not the (P + 1)th lurked object along
the initial passing path,58 and so, by Claim 7 part (c), there is an agent ` that is an active
non-lurker at h∗2 that does not move at h∗2 and xi ∈ C

⊊
` (h

∗
2). Since h∗2 = h∗n, the result holds.

57Note that xi cannot be lurked at h∗2, since it has been offered to agent jp at h∗0, who is the terminator.
58If k1 clinches at h∗n, then xk1 is offered to an active non-lurker, and so cannot be the next lurked object

along the initial passing path; if some jp clinches at h∗n, then they are clinching a lurked object, and so h∗n is
the terminating history, which again implies that xk1 is not (P + 1)th lurked object along the initial passing
path (because no such object exists).

63



Case 2: There are strictly greater than P lurkers at h∗n. In this case, the objects
xj1 , . . . , xjP , xk1 , . . . , xkn′−1

are lurked at h∗n, while xkn′ is not, where n > n′ > 1.59 Consider
game Γn′+1, and notice that »n is equivalent to »n′+1 up to agent kn′ . Therefore, by Lemma
4, all agents k1, . . . , kn′ are in the same roles in all of these games, and h∗n = h∗n′+1. By Lemma
15, in Γn′+1, at h∗n′+1, there is an active agent ` such that ` is an active non-lurker at h∗n′+1

that does not move at h∗n′+1 and xi ∈ C
⊊
` (h

∗
n′+1). Since h∗n = h∗n′+1, the result holds. ∎

Proof of Lemma 17. By the assumption that n,m ≥ 2 in Σ and Σ′, we have that there
exist (at least) the following codings:

j1⋯jP »1 {i, k1} »1 ⋯

j1⋯jP »2 k1 »2 {i, k2}⋯

j1⋯jP »
′
2 i »

′
2 {k1, k

′
2}⋯.

We start by presenting the following two conditions, one of which, when combined with
prior lemmas, will imply that Statement 1 of the lemma holds, and the other of which will
imply Statement 2 of the lemma holds.

• Condition 2: In Γ2, at h∗2 there is an active non-lurker ` such that ` does not move at
h∗2 and xi ∈ C

⊊
` (h

∗
2).

• Condition 2′: In Γ′
2, at h∗2′ , there is an active non-lurker ` such that ` does not move

at h∗2′ and xk1 ∈ C
⊊
` (h

∗
2′).60

We first show that these conditions imply the lemma. Then, we show that one of these
conditions must hold.

We will show that Condition 2 implies that Statement 1 of Lemma 17 holds. The two
statements are symmetric, so this will also show that Condition 2′ implies Statement 2 of
Lemma 17.

To show Condition 2 implies Statement 1, we use Lemma 19. So, consider the sequence
59Because Q ≥ 2, the last agent coded in step 1 of Γn is at most kn−1, which means that xkn−1 is not lurked,

i.e., the last lurked object is at most xkn−2 , which is why we have n′ < n.
60We use h∗2′ (instead of h

′
∗

2 ) to denote the first history at which an object is clinched in game Γ′2 (under
role assignment σ′2).

64



of codings

j1⋯jP »1 {i, k1} »1 ⋯

j1⋯jP »2 k1 »2 {i, k2}⋯

j1⋯jP »3 k1 »3 k2 »3 {i, k3} »3 ⋯

⋮

j1⋯jP »n k1 »n k2 »n k3 »n ⋯ »n kn−1 »n {i, kn} »n ⋯

j1⋯jP »n+1 k1 »n+1 k2 »n+1 k3 »n+1 ⋯ »n+1 kn−1 »n+1 kn »n+1 i⋯

Recall that it is wlog to assume that there are at least P lurked objects at h∗n′ for each n′.
We claim further that in this case, there are exactly P lurked objects at h∗n′ for each n′. For
n′ = 1, this follows from the fact that i and k1 tie. For n′ > 1, the next ordered agent is k1.
So, if there were p > P lurked objects at h∗n′ , the (p + 1)th lurked object would have to xk1 ,
which contradicts the supposition of the lemma. Therefore, for all n′ = 1, . . . , n + 1, at h∗n′ in
game Γn′ , there are exactly P lurked objects, and by definition, these must be xj1 , . . . , xjP ,
in this order.

Next, notice that for all n′ ≥ 2, since there are exactly P lurked objects at h∗n′ , the set of
agents coded in step 1 of Γn′ must be j1, . . . , jP , k1. In particular, this is true for Γ2 and Γn,
and since »2 is equivalent to »n up to agent k1, by Lemma 4, all of these agents are in the
same roles in both games, and h1∗

n = h∗2. By Condition 2, there is some agent ` such that ` is
an active non-lurker that does not move at h∗2 and xi ∈ C

⊊
` (h

∗
2). Since h1∗

n = h∗2, we have that
in Γn, there is some agent `′ that is an active non-lurker at h1∗

n and that does not move at
h1∗
n and xi ∈ C

⊊
` (h

1∗
n ). Further, Q ≥ 2. Thus, all of the conditions of Lemma 19 are satisfied,

and we conclude that i must tie with some agent kn+1 in »n+1.
We complete the proof of Lemma 17 by showing that at least one of Condition 2 or

Condition 2′ must hold. This assertion is proven as Lemma 21 below. ∎

Lemma 21. Assume that there are three codings:

j1⋯jP »A {i, k} »A ⋯

j1⋯jP »B i »B ⋯

j1⋯jP »C k »C ⋯

such that:

• At each of h∗A, h
∗
B, h

∗
C, the objects xj1 , . . . , xjP are all lurked, in this order, and

• Neither xi nor xk are the (P +1)th lurked object on the initial passing path of the game.

65



Then, one of the following conditions must hold:
Condition (B): In ΓB, at h∗B there is an active non-lurker ` such that ` does not move at

h∗B and xk ∈ C
⊊
` (h

∗
B).

Condition (C): In ΓC, at h∗C, there is an active non-lurker ` such that ` does not move
at h∗C and xi ∈ C

⊊
` (h

∗
C).

Proof of Lemma 21. First, notice that in each of the games, there must be exactly P
lurkers at h∗γ for γ = A,B,C. It is a presumption of the lemma that there are at least P
lurkers. To see that there are at most P lurkers, notice that, for ΓA, this holds because i
and k tie. In ΓB, it holds because xi is not the next lurked object along the initial passing
path, and thus, xi must be the first—and since there is no tie, only—unlurked object that
is coded in step 1. The same applies to ΓC . Therefore, in ΓA, there are exactly P + 2 agents
coded in step 1, while in ΓB and ΓC , there are exactly P + 1 agents coded in step 1.

In ΓA, at h∗A, there are P active lurker roles and two active non-lurker roles. The objects
xj1 , . . . , xjP are lurked, and xi and xk are unlurked. Let s be the active non-lurker role that
moves at h∗A, and s′ the role of the other active non-lurker. One of xi or xk must be the first
unlurked object that is clinched in step 1 of the coding algorithm, either at h∗A itself, or in
the chain of assignments that follows. Assume it is xi (a symmetric argument works if it is
xk). This implies that xi ∈ C

⊊
s′(h

∗
A), and σA(s′) = k. There are two cases, depending on who

is in role s.
Case 1: σA(s) = jp for some p. Agent jp must be clinching a lurked object at h∗A, which

implies that h∗A is the terminating history, and s is the terminator role. This means that
s′ is not the terminator role, and so xk ∉ C⊆s′(h∗A); indeed, if this were true, then xk would
have clinched it in ΓA, because it is her favorite unlurked object and only unlurked objects
are possible for a non-lurker who is not the terminator (Lemma 11(iv)). It also means that
agent i must be a lurker for some object xjp̄ , and thus, agent i strictly prefers xjp̄ to xi.

Now, consider game ΓC . The agents coded in step 1 of ΓC are j1, . . . , jP , k, and so it must
be one of these agents that moves at h∗C .

Subcase 1.1: The agent that clinches at h∗C is some jp′. Here, h∗C must also be the
terminating history, and so σC(s) = xjp′ and h

∗
A = h∗C . Since k is coded in step 1, she must

then be a lurker, and so there is some other agent ` ≠ j1, . . . , jP , k such that σC(s′) = `. We
claim that ` ≠ i. Indeed, if ` = i, then there is some history h′ ⊊ h∗C such that xi ∈ Ci(h′).
Since s′ is not the terminator role, only unlurked objects are possible for i in ΓC , and since xi
is her top unlurked object, she would clinch at h′, a contradiction. Therefore, σC(s′) = ` ≠ i,
and Condition (C) holds.

Subcase 1.2: Agent k clinches at h∗C in ΓC. Here, we have σC(s) = k, because, as
we saw above, xk ∉ C⊆s′(h∗A) and h∗A is the terminating history, so h∗C ⊆ h∗A. Let h′ ⊊ h∗A be

66



the history at which role s′ is offered to clinch xi.
If h∗C ⊋ h′, then, by similar logic to subcase 1.1, σC(s′) = ` for some ` ≠ j1, . . . , jP , k, i, and

Condition (C) holds.
Finally, consider h∗C ⊊ h′.61 In ΓB, since there are exactly P + 1 agents coded in step 1,

xi is the first (and only) unlurked object that is clinched, and since there is no tie, it has
not been offered to another active non-lurker. This implies that h∗B ⊆ h̃ ⊊ h∗A. Since h∗B is
not the terminating history, it must be an unlurked object that is clinched, and therefore,
it must be i that clinches xi. If σB(s) = i, then i is in the terminator role, and would not
clinch xi first at h∗B (recall that she prefers xjp̄ to xi). Thus, it must be that σB(s′) = i, and
i clinches xi at h∗B. If h∗B ⊊ h∗C , then by similar logic to the above, Condition (C) holds. If
h∗C ⊊ h∗B, then xk ∈ C

⊊
s (h∗B) for the agent in role s. Notice that σB(s) ≠ k, because if so, then

k has the same roles in ΓB and ΓC , and so would clinch at h∗C ⊊ h∗B in ΓB, a contradiction.
It is also immediate that σB(s) ≠ j1, . . . , jP , since they must be in the lurker roles for their
respective objects. Thus, σB(s) = ` for some ` ≠ j1, . . . , jP , i, k, and Condition (B) holds.

Case 2: σA(s) = i. We once again have that role s′ is not the terminator role,62 and
so, as in Case 1, xk ∉ C⊆s′(h∗A). Once again, consider game ΓC . As in Case 1, there are two
subcases.

Subcase 2.1: The agent that clinches at h∗C in ΓC is some jp′. Here, jp′ clinches
a lurked object at h∗C , and so h∗C is the terminating history. This implies that h∗A ⊆ h∗C , and
σC(s) = jp′ . But then, notice that the agent in role s′ is an active non-lurker at h∗C that
does not move at h∗C , and xi ∈ C

⊊
s′(h

∗
C). Since this agent is not coded in step 1, we know

that σC(s′) ≠ j1, . . . , jP , k. If σC(s′) = i, then i is offered to clinch xi at some h′ ⊊ h∗C , and
since s′ is not the terminator role, only unlurked objects are possible for her, and therefore,
since xi is i’s top object, she would clinch at h′, a contradiction. Thus, σC(s′) = ` for some
` ≠ j1, . . . , jP , i, k, and xi ∈ C

⊊
` (h

∗
C), i.e., Condition (C) holds.

Subcase 2.2: The agent that clinches at h∗C in ΓC is k. Since k clinches first, and
xk is unlurked, all lurked objects are immediately assigned to their lurkers, which implies
that jp is in the lurker role for xjp for all p = 1, . . . , P .

If h∗A ⊆ h∗C , then, at h
∗
C , there are two active non-lurkers, σC(s) and σC(s′), and both

have been offered xi. One of these must be k. If σC(s′) = k, then notice that σC(s) ≠ i,
because if σC(s) = i, then i is in the same role in ΓA and ΓC , and would clinch at h∗A in
ΓC , which contradicts that k clinches first in ΓC . Thus, σC(s) = ` ≠ i. If σC(s) = k, then if
σC(s′) = i, then i is in the non-terminator role, and xi ∈ Ci(h̃) for some h̃ ⊊ h∗A ⊆ h∗C , and
since xi is i’s favorite unlurked object, she will clinch it at h̃, a contradiction. Therefore, in

61Note that h∗C = h′ is ruled out because role s′ moves at h′, while role s moves at h∗C .
62This follows from Lemma 11.

67



either case, there is some agent ` ≠ j1, . . . , jP , i, k such that xi ∈ C
⊊
` (h

∗
C), and Condition (C)

holds.
It remains to consider h∗C ⊊ h∗A. Here, we must have σC(s) = k, because if σC(s′) = k, then

as we showed above, xk ∉ C
⊊
s′(h

∗
A), which contradicts that k clinches at h∗C . Now, consider

ΓB. In ΓB, since there are exactly P + 1 agents coded in step 1, xi is the first (and only)
unlurked object that is clinched, and the agents coded in step 1 are j1, . . . , jP , i.

If h∗B ⊆ h∗C , then, h
∗
B ⊊ h∗A, and h∗B is not the terminating history. Thus, in ΓB, agent

i must move at h∗B and clinch xi. This implies that σB(s′) = i, because if σB(s) = i, then
i has the same role in ΓA and ΓB and clinches at both h∗B and h∗A, which contradicts that
h∗B ⊊ h∗A. Further, this means that h∗B ≠ h∗C , because role s moves at h∗C and role s′ moves at
h∗B. Thus, at h∗C in ΓC , we have xi ∈ C

⊊
s′(h

∗
C). We cannot have σC(s′) = i, because i would

clinch at h∗B in ΓC , a contradiction. Therefore, σC(s′) = ` for some ` ≠ j1, . . . , jP , i, k and
xi ∈ C

⊊
` (h

∗
C), and thus, Condition (C) holds.

If h∗C ⊊ h∗B, then if some jp′ clinches at h∗B in ΓB, then h∗B is the terminating history, and
h∗A ⊆ h∗B. But then, there is an active non-lurker—the agent σB(s′)—that has been offered to
clinch xi prior to h∗B, and so i would at best tie with this agent in »B, a contradiction. Thus,
it must be i that clinches at h∗B in ΓB, which implies that σ−1

B (i) = s or s′. If σ−1
B (i) = s, then

i has the same roles in ΓA and ΓB, and so h∗A = h∗B, and i would tie with the agent in role
s′ in »B, a contradiction. Thus, σB(s′) = i. This means that h∗C and h∗B are controlled by
different roles, and xk ∈ C

⊊
s (h∗B). Finally, we cannot have σB(s) = k, because then k is in the

same role as ΓC , and would clinch at h∗C ⊊ h∗B in ΓB. So, we must have σB(s) = ` for some
` ≠ j1, . . . , jP , i, k, and in ΓB, xk ∈ C

⊊
` (h

∗
B). Therefore, Condition (B) holds.

Finally, notice that all of this was done under the assumption that xi was the first unlurked
object that was clinched in step 1 of the coding algorithm in ΓA. The other possibility is
that this object is xk. However, everything is symmetric, and so the exact same argument,
swapping the i and k, shows that either Condition (B) or Condition (C) must hold in this
case as well. ∎

68


	Introduction
	Model: The Allocation Problem and Extensive-Form Games
	Environment
	Extensive-form Games
	Strategies, Mechanisms, and Equivalence

	Random Priority and Its Properties
	The Main Result
	An Application to Simplicity Tradeoffs
	Conclusion
	Roles and Role Assignment Functions
	Key Steps of the Proof
	Proof of Proposition 2
	Proofs of Lemmas 3, 4, and 5


