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Abstract

A mechanism is strategy-proof if agents can never profitably manipulate it, in any state of the world;
however, not all non-strategy-proof mechanisms are equally easy to manipulate - some are more “obvious-
ly” manipulable than others. We propose a formal definition of an obvious manipulation in which agents
compare worst cases to worst cases and best cases to best cases. We show that a profitable manipulation
is obvious if and only if it can be identified as profitable by a cognitively limited agent who is unable
to engage in contingent reasoning, as in Li (2017). Finally, we show that this system of categorization is
both tractable and intuitively appealing by classifying common non-strategy-proof mechanisms as either
obviously manipulable (OM) or not obviously manipulable (NOM).
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

When designing mechanisms for allocating resources, such as in auctions, matching, or other
assignment problems, there is a long and rich literature studying strategy-proof direct mecha-
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nisms, which are often seen as desirable because an agent need not forecast what they expect
others to do in order to determine their own optimal strategy.” Indeed, strategy-proof direct
mechanisms have played a large role in many practical market design applications, including
auctions, school choice (Abdulkadiroglu and S6nmez, 2003), medical residency matching (Roth
and Peranson, 1999), and kidney exchange (Roth et al., 2004), among others. At the same time,
imposing strategy-proofness can be costly, and allowing for non-strategy-proof (or, manipulable)
mechanisms widens the space of possibilities. While some agents may benefit by lying in a ma-
nipulable mechanism, the ease of recognizing and enacting such manipulations may vary across
mechanisms. The goal of this paper is to provide a simple and tractable method for determining
when a mechanism is easy to manipulate.

To motivate our project, consider two widely-used, manipulable mechanisms. The first is the
Boston mechanism for school choice. Under this mechanism, a student loses her priority at a
school unless she ranks it first. Therefore, if a student has high priority at a school that is her
true second choice, she may be better off by lying and ranking this school first. By doing so,
she can guarantee being assigned to it, whereas if she told the truth, she risks losing it to others
who ranked it higher, and may end up at her third (or worse) choice. Not only is the Boston
mechanism manipulable in the formal sense of failing to be strategy-proof, but further, the rel-
evant manipulations are also very easy to identify and enact. Indeed, this has been discovered
and used by both parents and policymakers. For instance, Pathak and Sonmez (2008) report on a
well-organized parent group in Boston advising their members as follows:

One school choice strategy is to find a school you like that is undersubscribed and put it as a
top choice, OR, find a school that you like that is popular and put it as a first choice and find
a school that is less popular for a “safe” second choice.

Using data from magnet school assignment in Wake County, NC, which used a version of the
Boston mechanism, Dur et al. (2018) present empirical evidence that many students do in fact act
strategically in line with the above advice. Indeed, one of the primary objections to the Boston
mechanism is the ability of strategic students, who recognize the potential manipulations, to profit
at the expense of non-strategic students, who just report truthfully (Pathak and Sénmez, 2008).
This has been a leading factor in the abandonment of the mechanism in some jurisdictions.’

On the other hand, consider labor markets for new physicians, which are often organized
using a centralized clearinghouse. Comparing variations in mechanisms across regions in the
UK and US, Roth (1991) shows that priority match mechanisms (which are closely related to
the aforementioned Boston mechanism) tend to perform poorly in practice, while mechanisms
based on Gale and Shapley’s (1962) Deferred Acceptance (DA) algorithm perform well. The
explanation proposed in Roth (1991) is that DA produces a stable outcome, while priority match
mechanisms do not. This applies to the reported preferences, and it is also well-known that DA

2 This literature goes back to at least Vickrey (1961), who writes that in a second-price auction “Each bidder can
confine his efforts and attention to an appraisal of the value the article would have in his own hands, at a considerable
saving in mental strain and possibly in out-of-pocket expense”.

3 Though the use of the Boston mechanism has been abandoned in some places (including its namesake city and a
total legislative ban in England), it still remains one of the most popular assignment mechanisms overall. Since so many
school districts use an “obviously” manipulable mechanism, one might wonder whether the degree of manipulability is
an important consideration for school districts. Pathak and Sénmez (2013) provide an extensive discussion on this issue,
as well as a comprehensive list of authorities that have used (and abandoned) such mechanisms, past and present.
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is not strategy-proof for both sides of the market.* However, while it is possible for hospitals to
manipulate their preferences under DA and obtain a better assignment in some states of the world,
to do so successfully requires a detailed understanding of the mechanics of the mechanism and of
the preferences of the other agents. Without such knowledge, it is very possible that attempting
such a manipulation may backfire: the manipulating hospital may not be assigned a doctor it
would be happy to employ. This is in stark contrast to the Boston mechanism, where a student
can guarantee a spot at her second-choice school, and thereby surely avoid a potentially worse
outcome from reporting truthfully.

These examples suggest that some mechanisms may provide opportunities for manipulation
that are much easier for agents to recognize and execute successfully than others; in other words,
some manipulations are more “obvious’ than others. The main contribution of this paper is a for-
malization of the word “obvious”, which we then use to classify non-strategy-proof mechanisms
as either obviously manipulable or not obviously manipulable.

For a given agent, a report 0’ is a manipulation if the agent ever does strictly better reporting
@’ over reporting her true type, 6. In this case, truthful reporting cannot be a dominant strategy.
We define 6’ to be an obvious manipulation if either the best possible outcome under 6’ is strictly
better than the best possible outcome under 0, or the worst possible outcome under 8’ is strictly
better than the worst possible outcome under 8. Clearly an obvious manipulation is also a ma-
nipulation; however, we argue that an obvious manipulation is identifiable to agents in a way that
non-obvious manipulations are not.’

To formalize the idea that obvious manipulations are easier to identify, we consider an agent
who is not fully informed (or does not fully understand) how a mechanism ¢ is defined, but
instead is only able to determine the set of possible outcomes from any given strategy; mathe-
matically, she knows the range of ¢ conditional on her own report, but not the full function itself,
state-by-state. For example, in the context of school assignment, this could be a neighborhood
parent group that does not fully understand (or has not been told) the assignment algorithm be-
ing run but has kept track of what preferences parents have submitted and what the resulting
assignments were. Theorem | demonstrates that obvious manipulations are exactly the manip-
ulations that can be identified by such an agent. This is our theoretical foundation of the term
“obvious”: even an agent who does not fully know how the mechanism is defined can deduce
that the mechanism can be manipulated.

Both our formal definition and our behavioral characterization are inspired by the influential
paper of Li (2017) on ebvious strategy-proofness (OSP). Li (2017) starts from the observation
that real-world agents are often unable to engage in the intricate, contingent reasoning necessary
to fully understand the implications of a given course of action on a state-by-state basis (mathe-
matically, in our context this would be equivalent to knowing the entire function ¢).° Formally,
Li (2017) also considers agents who know only the set of possible outcomes from any given strat-

4 See Roth (1982), who shows that there is no mechanism that is stable and strategy-proof in two-sided matching.

3 Implicit in our construction is the assumption that truthfully reporting your type is a focal strategy for an agent. Focal
strategies trace back to Schelling (1980), and have been used in other mechanism design contexts, both theoretical (e.g.,
Pathak and Sénmez, 2008; Bochet and Tumennasan, 2017; Dutta and Sen, 2012) and experimental (e.g., Featherstone
and Niederle, 2016; Pais and Pintér, 2008). For example, in interpreting the results of their school choice experiment,
Featherstone and Niederle (2016) write “A plausible explanation is that truth-telling holds special sway as a focal strate-
ay".

6 Indeed, there is increasing evidence that many people have difficulties with hypothetical reasoning even in single-
agent decision problems (Charness and Levin, 2009; Esponda and Vespa, 2014), let alone environments with strategic
interactions among many agents.
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egy, which can be understood as either a lack of ability to contingently reason, or equivalently as
agents who are given only a partial description of the mechanism. Obviously dominant strategies
are then those that are recognizable as dominant by such agents. While robust when they exist,
very few mechanisms will have obviously dominant strategies; indeed, almost no normal-form
games will be obviously strategy-proof. Many real-world applications like those we are con-
cemned with (school choice, NRMP) have tens of thousands of agents, making it impractical to
run an extensive-form (OSP) mechanism,” which motivates our restriction to direct mechanisms.
Even in this context, strategy-proofness itself is limiting, and so, rather than strengthen it, our
approach is to relax strategy-proofness and instead look for mechanisms that are not obviously
manipulable.

After our behavioral characterization, we apply our definition to several canonical market
design environments, starting with school choice. We first formalize the above discussion re-
garding the Boston mechanism and show it is indeed obviously manipulable (Proposition 1). The
main alternative to the Boston mechanism, the (student-proposing) DA mechanism, is strategy-
proof for the students, but may produce Pareto inefficient assignments. To correct this, many
new mechanisms that Pareto improve on DA have been proposed. While it is known that any
such mechanism is manipulable (Abdulkadiroglu et al., 2009; Kesten, 2010; Alva and Manju-
nath, 2019), we show a striking result: while they may be manipulable, any mechanism that
Pareto dominates DA is not obviously manipulable (Theorem 2). This has particularly impor-
tant implications for the efficiency-adjusted deferred acceptance (EADA) mechanism of Kesten
(2010), which has received renewed attention, as several recent papers have shown that EADA
is the unique Pareto efficient mechanism that also satisfies natural fairness axioms (Dur et al.,
2015; Ehlers and Morrill, 2017; Tang and Zhang, 2017; Troyan et al., 2018). The only shortcom-
ing of the EADA assignment is its implementation: it is a manipulable mechanism. However,
Theorem 2 implies that EADA is not obviously manipulable.

After presenting our results for school choice, we discuss several other canonical market de-
sign applications. For two-sided matching, we show that while DA is manipulable for the receiv-
ing side, it is not obviously so (Theorem 3). For multi-unit auctions, we show that first-price/pay-
as-bid multi-unit auctions are obviously manipulable (Corollary 2), while the (K + 1)-price
auction is not (Theorem 4).° Finally, we consider the classic bilateral trade setting with one
buyer and one seller. We first show directly that double auctions (Chatterjee and Samuelson,
1983) are obviously manipulable. We then ask whether there is any NOM mechanism that also
satisfies other common desirable properties. Our last result is an impossibility result in the spirit
of Myerson and Satterthwaite (1983): every efficient, individually rational and weakly budget
balanced mechanism is obviously manipulable (Theorem 5).

We stress that in our model, agents have standard preferences over outcomes, and we make no
assumptions about prior probability distributions over the types or reports of other agents; rather,
we presume that the ability of agents to recognize certain deviations as profitable may vary across
mechanisms. Thus, our approach is consistent with the Wilson doctrine (Wilson, 1987), in the
sense that determining whether a mechanism is obviously manipulable requires no assumptions

7 Ashlagi and Gonczarowski (2018), Troyan (2019), Pycia and Troyan (2016), Arribillaga et al. (2017), and Bade
and Gonczarowski (2016) fully characterize obviously strategy-proof mechanisms in various environments, including
matching, voting, and auctions, among others.

8 In auctions for government securities, Hortagsu and McAdams (2010) find considerable bid-shading in pay-as-bid
multi-unit auctions (also called discriminatory auctions), while Kastl (2011) finds little such behavior in (K + 1)-price
auctions (also called uniform price auctions), consistent with our classification.
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about common knowledge or agents’ prior beliefs. For instance, in the bilateral trade setting, it is
difficult for the buyer to determine her optimal bid in a double auction mechanism, because it is
highly sensitive to his beliefs about the seller’s ask (and vice-versa). Our definition captures this
difficulty by classifying this mechanism as obviously manipulable.’

A common alternative approach to relaxing strategy-proofness in market design (without
moving all of the way to Bayesian incentive compatibility) relies on large markets. Immorlica and
Mahdian (2005) and Kojima and Pathak (2009) show that the incentives to manipulate DA vanish
as the size of the market approaches infinity. Azevedo and Budish (2019) define a related concept
of strategy-proofness in the large (SPL). While similar in motivation, our approach is distinct in
several respects. Most notably, we require no assumptions on how preferences are drawn or agent
beliefs; further, our results hold for markets of any size, and not just in the limit.'? Another recent
strand of literature tries to quantify a mechanism’s manipulability using particular metrics. This
includes Carroll (2011), who defines a mechanism’s susceptibility to manipulation as the maxi-
mum cardinal utility any agent can gain from lying, and Pathak and Sonmez (2013), who use a
profile-counting metric to define one mechanism as “more manipulable” than another if, for any
preference profile where the latter is manipulable for some agent, the former is as well. We do
not require any assumptions on cardinal preferences, nor do we attempt to rank mechanisms by
their degree of manipulability, but instead want to eliminate all obvious manipulations.

As an incentive criterion, NOM is weaker than strategyproofness, and thus allows more flex-
ibility in the choice of mechanism. Correspondingly, if agents report truthfully under a NOM
mechanism, then NOM mechanisms will allow for implementation of a wider range of alloca-
tion rules compared to strategyproof mechanisms. One caveat to our approach is that depending
on the context, it may or may not be reasonable to assume that agents will default to truth-telling
in an NOM mechanism. Further, even if NOM mechanisms do result in more agents reporting
truthfully, this may allow very sophisticated agents who do manipulate an NOM mechanism
to benefit even more at the expense of the non-strategic agents. If this is the case, it may be
normatively undesirable to use an NOM mechanism (for instance, it could exacerbate the in-
equity concerns raised by Pathak and Sonmez (2008)). How agents react to NOM mechanisms
and whether NOM mechanisms actually improve outcomes in practice are interesting empirical
questions to pursue in future research.

2. Definitions

We consider an environment with a finite set of N agents, I = {i1, ..., iy}, and a finite set of
outcomes, X. Agents have preferences over outcomes which we index by types 6; € ©;, where
®; is the set of possible types for agent i. The function u;(x; 6;) denotes agent i’s utility for
outcome x when his type is 6; (note that values are private).'! We focus on direct mechanisms.

% Our results thus provide a contrast to the recent literature on mechanism design with maximin expected utility agents
(MEU, Gilboa and Schmeidler, 1989), which also has agents comparing worst-case outcomes under any two reports. For
instance, De Castro and Yannelis (2018) claim that ambiguity can be used to “solve” the impossibility of Myerson and
Satterthwaite (1983) (see also Wolitzky, 2016), whereas our Theorem 5 reinforces Myerson and Satterthwaite’s negative
result.

10 Regarding DA in particular, also related are Barbera and Dutta (1995) and Fernandez (2018), who define particular
classes of strategies (protective strategies and regret-free truth-telling, respectively), and use them to explain truthful
reporting under DA.

11 While we use utility function notation u; (-; -), this is only for presentation and readability. For all of our results
(including the applications with transfers below), only ordinal preferences over outcomes are relevant, and the utility
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Letting ®; = x;¢;®;, a (direct) mechanism is a function ¢ : ®; — X that maps type profiles
to outcomes.'? When convenient, we will use the notation x; and ¢i(0) to denote i’s individual
allocation (e.g., in school choice, ¢ (@) = x is the entire assignment of all students to schools
when the type profile is 6, while ¢; () = x; is i’s school and, with slight abuse of notation, we
sometimes write u; (¢; (0); 6;) = u; (¢ (0); 6;) and u; (x;; 6;) = u; (x; 6;) as i’s utility for school
¢;(0) = x; when of type 6;).

An important concern when choosing a mechanism is the incentives given to the agents to re-
port their preferences truthfully. Formally, mechanism ¢ is strategy-proof if u; (¢ (6;,6_;); 6;) =
u; (¢ (9!.’, 0_;); 6;) foralli, all 6;, 9; € ®;,and all 6_; € ®_;. While desirable as an incentive prop-
erty, strategy-proofness is also a demanding condition, and may restrict a mechanism designer’s
ability to achieve other desirable goals. Indeed, many practical market design settings use non-
strategy-proof, or manipulable, mechanisms (see the Introduction). It is these mechanisms that
will be the focus of our paper.

Definition 1. Report 6] is a (profitable) manipulation of mechanism ¢ for agent i of type 6;
if there exists some #_; € ®_; such that u; (¢ (9;, 0_;); 6;) > u; (¢ (6;,6_;); 6;). If some type of
some agent i has a profitable manipulation, then we say that mechanism ¢ is manipulable.

Note that for a mechanism to be classified as manipulable, there must simply exist some pro-
file of the other agents, 6_;, such that when they report 6_;, agent i prefers to report 6; over the
truth 6;. However, in other instances, reporting 6/ may actually be worse for agent i than report-
ing truthfully. Thus, to any agent who must report her own type before she knows the types of
others, it may be very unclear whether such a manipulation will be profitable in practice. One
approach is to assume, in addition to her payoff type, each agent also has a belief type, and uses
this to evaluate her different options and choose the one that maximizes her (expected) utility.!?
However, extensive calculations of this type may be difficult for real word agents. In defining
obvious dominance, for example, Li (2017) considers an agent who “knows all the possible out-
comes that might result from [a particular] strategy. .. [but] does not know the possible outcomes
contingent on some unobserved event” (emphasis in the original), and looks for mechanisms
where all possibilities from one strategy are weakly better than all possibilities from any other.
At the same time, calculating worst (or best) possible outcomes is typically much simpler than
calculating all possible outcomes; further, even if it is possible to do the latter, it is still unclear
how to compare the resulting sets of possibilities, at least without making assumptions on prior
distributions and beliefs.

Motivated by these observations, and by the examples given in the introduction, we look
for a weakening of strategy-proofness that does not require the agents to engage in extensive

functions should not be interpreted as von Neumann-Morgenstern utilities (indeed, we think the lack of reliance on
probability distributions is one of the advantages of our approach). Further, since each 6; can be identified with an
ordinal ranking over X and X is finite, ®; is finite as well.

12" While our main ideas can also be applied more generally, the restriction to private values and direct mechanisms is an
important class of problems motivated by the real-world applications we consider in the following sections where such
mechanisms are commonly used, such as school choice (Abdulkadiroglu and Sonmez, 2003; Pathak and S6nmez, 2013),
hospital-resident matching (Roth and Peranson, 1999), and centralized college admissions (Balinski and Sénmez, 1999;
Chen and Kesten, 2017), among others.

13 While not strictly necessary (see, e.g., Bergemann and Morris, 2005) applied game theory models often impose the
further restriction that each agent’s payoff type is drawn from ® according to some prior distribution that is common
knowledge.
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contingent reasoning or to calculate expectations (and therefore is not sensitive to assumptions
on the agents’ beliefs). Rather, we focus on comparing the best/worst cases, which we think
are both simpler and particularly salient. In the next section, we will motivate this definition
more formally by providing a characterization of obvious manipulations as those that can be
recognized by cognitively limited agents.

Definition 2. Mechanism ¢(-) is not obviously manipulable (NOM) if, for any profitable ma-
nipulation ¢/, the following are true:

() ming_; u; (¢ (6;,6_;); 6;) < ming_; u; (¢ (6;, 6_;); 6;)
(ii) maxg_, u; (¢ (8;,0-i); 6;) < maxg_, u; (¢ (6, 6-i); 6;)

If either (i) or (ii) does not hold for some manipulation Bi’ , then 91.’ is said to be an obvious
manipulation for agent i of type §;, and mechanism ¢ is said to be obviously manipulable
(OM).

Intuitively, a manipulation 6/ is classified as “obvious” if it either makes the agent
strictly better off in the worst case (i.e., ming_, u; (¢(6’i’, 6-:i); 6;) > ming_; u; (¢ (6;,60-i); 6:))
or it makes the agent strictly better off in the best case (i.e., maxg_, u;(¢(0],0_;); 6;) >
maxy_, u; (¢ (6;,6—;); 6;)). If either (i) or (ii) is violated for a manipulation Bi’ , then we say 9;
is a non-obvious manipulation. In other words, a manipulation is non-obvious if the best and
worst case outcomes from truth-telling are always weakly better.

3. Characterization

In this section, we provide a characterization of obvious manipulations in the spirit of the
characterization of obviously strategy-proof mechanisms presented in Li (2017).'* Li (2017)
considers an agent who is aware of the possible outcomes from her choices, but who is unable
to engage in contingent reasoning. This agent is aware of the experiences that a mechanism will
generate, and at each information set, knows the set of outcomes that can result from a strategy.
If an agent cannot distinguish between two mechanisms when armed only with this information,
Li (2017) defines the two mechanisms to be i-indistinguishable, and shows that an agent who
cannot distinguish between i-indistinguishable mechanisms is able to determine that a strategy
is weakly dominant if and only if the strategy is obviously dominant.

We consider the same cognitively limited agent as in Li (2017). As we work only with direct
mechanisms, our definitions are correspondingly simpler. In particular, in a direct mechanism,
the set of experiences the mechanism can generate is the range of possible outcomes. Recall that
we use x; to denote i’s individual allocation under outcome x and ¢; () to be i’s individual allo-
cation under mechanism ¢. Formally, given an agent i, strategy 6;, and mechanism ¢, we denote

the range of possible outcomes from strategy 6. by Jrf) ©)) = [x,-lEIB_,- s.t. i (6],0-;) =xi}.
Mechanisms ¢ and ¢’ are i-indistinguishable if for every 6/ € ©;, JTi¢ )= rrf / ).
Our first theorem shows that a mechanism ¢ has an obvious manipulation if and only if,

for every mechanism  that is i-indistinguishable from ¢, the corresponding manipulation is
profitable. One interpretation of this theorem is that even cognitively limited agents who may not

14 We thank an anonymous referee for suggesting the analysis in this section.
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outcomes

A

B ¥ B
C 3

D 3 D
E

6 8 0 o, 0 6

Fig. 1. When, by observing just the range of outcomes, can we determine if one strategy weakly dominates another?
Consider an agent who ranks outcomes A > B > C > D > E. For this agent, it is not possible to know if § weakly
dominates 9[; or if & weakly dominates 95 (the inputs that resulted in assignment C could now result in either B or D);
however, we are certain that 6 does not weakly dominate Bé.

fully understand the mechanism they are playing will still be able to recognize manipulations if
they are obvious. Another interpretation is that the set of obvious manipulations are exactly those
that can be identified by agents who are only given partial information about the mechanism that
will be run, in the sense that they know the range of possible outcomes from any given report.
For instance, in a school choice context, parent groups may have historical data that keeps track
of the preferences parents have submitted in previous years, and what their resulting assignments
were. Such parents will be able to identify obvious manipulations, even without knowing (or
fully understanding) exactly what mechanism is being used.

For our characterization, we impose a mild restriction on the model to avoid trivialities. The
assumption we impose is a richness condition that the type spaces are “large enough”. Formally,
type space O is rich if for any agents i and j, |®;| > | {x;|x € X} |15 This condition is easily
satisfied in the applications we consider in the next section. For example, in school assignment,
each student has (|§|4-1)! possible types (each way of ranking each school and being unassigned
is a distinct type), but for an individual agent, there are only |S| 4 1 possible allocations (i.e.,
schools she may be assigned).

Theorem 1. Suppose there are at least three agents and the type space is rich. For any i, 6;,
49;, it holds that Gi’ is an obvious manipulation for 6; under ¢ if and only if for every ¥ that is
i-indistinguishable from ¢, 0! is a profitable manipulation for 6;.

The intuition behind the equivalence between an obvious manipulation and the manipulations
that an agent with limited information can recognize is provided in Fig. 1. Here, an agent ranks
the outcomes A > B > C > D > E, and the range of possible outcomes are given for various
reports. In the first comparison, between 6 and 61, the agent knows that 6] is sometimes worse
than €, but she cannot tell if it is sometimes better. When there is a “hole” in the range, such
as when comparing 6 to 6, the agent cannot determine if that outcome has been replaced with
something better or worse. Only in the last comparison, 6 versus 84, can the agent be certain that
the alternative, 95, is sometimes strictly better than 8. There is some state of the world where she

15 The RHS is the number of possible individual allocations for agent i. For instance, in school assignment, each agent
may be assigned to one of | S| possible schools or remain unassigned, and so |{x;|x € X}| =|S| + 1 for all i.
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receives D after submitting 6, and whenever this occurs, she does strictly better submitting 6;
instead of 6.

Proof of Theorem 1. Suppose 6 is an obvious manipulation for §; under mechanism ¢. Denote

i’s best possible outcome under any mechanism ¢’ when reporting 6/ by B?’ (6)). We demonstrate
the result for the case where u; (Bf (6)); 6;) > u; (Bf (6:); 6;) (in words, when her best possible
outcome from submitting 6 is strictly preferred to her best possible outcome from submitting
;). Consider any i-indistinguishable mechanism ¢’, which is to say that n'? (91.’ )= n'? ' (9; ) for
all 9; (including 6;). Note that in particular, this implies that Bf’ ) = Bf’ r (6;) and Bf (Bi’) =
BY (0. Since 7’ (6)) =z (6)), there exists a 6_; such that ¢(6;,6-;) = B (6/) = BY (6)).
By definition, ¢;(6) € nff(f?,-) and ul-(B?’(t?,-); 6;) > u;(¢;(0); 0;). Therefore, ui(Bf)(Bi’); 0;) >
u; (B;25 (6;); 6;) (since 6/ is an obvious manipulation under ¢) and B? @) = B;jJ f (6;) and
B?(6)) = B (8]) (since ¢ and ¢ are i-indistinguishable), and so we have u;(BY (6)); 6;) >
Hi(Bf” (6); 6;) = u; (¢/(6); 6;), and it follows that u; (¢; (6, 6_;); 6;) > u; (¢,(6); 6;), 1.e.,6; is a
profitable manipulation for 6; under ¢’. A symmetric argument establishes that when the worst
outcome (under ¢) from 6 is strictly better than the worst outcome under 6;, then 6 is a prof-
itable manipulation of 8; for every i-indistinguishable mechanism.

For the reverse direction, we prove the contrapositive. Fix a mechanism ¢, an agent i, a type
6;, and an alternative report 8/ such that 6 is not an obvious manipulation of 6;. We will construct
a mechanism ¢’ that is i-indistinguishable from ¢ such that 6/ is not a profitable manipulation of
6; . First, forany 6 ¢ [9,-, 9:} andany 6_;,let ¢’ (8; 0_;) = ¢ (6;'; 6_;). Denote i’s worst possible
outcome under mechanism ¢’ from submitting 6/ by Wi¢ (6)) and let @ = Bf) @), a = B;b @),
a= Wf’ 6;),and a’' = Wf (6;). Since we have assumed that 6] is not an obvious manipulation of
O, ui(a; 6;) > u;(@'; 6;) and u; (a; 6;) > u;(a’; 6;).

For every a € n’fb (#;) fix a (distinct) #%,. For these values, define qblf (6;,6%,) = a and
¢/(0],6%) = a’. Similarly, for every a’ € x? (6)) fix a (distinct) 6%,, such that each 67/ is dis-
tinct from all 93: previously chosen (including those chosen for the set nfb (6;)), and for these
values, define ¢, (6;, 92’1-) =a and ¢;(9;, 93’,-) = a’. Our assumptions that there are at least three
agents and a rich type space ensures that there are sufficiently many distinct profiles 6_; € @_;
so that this procedure is well-defined. For every other profile 6_;, define ¢£ (6;,0_;) =a and
L0, 6_)=a.

We have constructed ¢’ so that n'f’ ;) = n’f’ ’ (6;) and Jl'f5 ) = n’fj f (8)). It is trivially true
that for all other types 6, rrf' 6= J'rf5 ’ (6{"). Therefore, ¢ and ¢’ are i-indistinguishable. Fur-
ther, by construction, for every profile 6_;, u; (¢!(6;,60—_;); 6;) = u; (¢;(6;,6_;); 6;). To see this,
note that for any 6_; such that 8 ; = 8¢, for some a € nf’(ei), we have ui((pz’. 6;,6_,);6;) =
ui(a; 6;) = u;i(a; ;) > u;(@’; 6;) = u; (¢;(8;,6_;); 6;), where the inequalities come from the def-
inition of 4 and a4’ and the fact that ] is not an obvious manipulation of 6;. Similarly, for any
6_; = 6%, for a’ € 7{(8)), we have u;($](6:,6-1):6)) = ui(@; 6;) > u; (@: 6:) > u; (@’; 6;) =
ui(¢/(0;,0_;); 6;), where the inequalities again come from the definition of @ and @’ and the
fact that 6 is not an obvious manipulation of ;. For any other 6_;, ¢!(6;;6_;) = a and
¢£ (9!.’ ;6_;) =@, and so, by definition of @ and @’ and the fact that 6’1.’ is not an obvious manip-
ulation of 6;, we have u;(¢;(6;; 0—); 6;) > ui(¢;(6]; 0); 0;). Therefore, u;($;(0;,0-:); 0;) >
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ui (¢/(0;,0_;); 0;) for all 6_;, or, in other words, ] is not a profitable manipulation of 6; in
mechanism ¢’. O

4. Applications

In this section, we apply the ideas introduced above to several important market design envi-
ronments, including school choice, two-sided matching, auctions, and bilateral trade. In these
environments, we use the definition of an obvious manipulation to classify commonly-used,
non-strategy-proof mechanisms as either obviously manipulable (e.g., the Boston mechanism,
pay-as-bid auctions) or not obviously manipulable (e.g., school-proposing DA, uniform price
auctions).

4.1. School choice

We begin by considering a canonical school choice model, as in the seminal paper of Ab-
dulkadiroglu and Sonmez (2003). Let S be a set of schools. Each school has a capacity g, and a
strict priority ranking > over I U {#}, where @ is interpreted as remaining unmatched (or taking
some outside option). A matching is a function u : I U S — 1 U SU {d} such that (i) u; € SU {0}
foralli € I (ii) us C I and |us| < g5 foralls € § and (iii) u; = s ifand only if i € p,. If u; =9,
then a student remains unmatched.

In the notation of the previous section, X would be the set of all matchings and ¢; would
parameterize each agent’s utility function over matchings. However, in school choice models, it
is standard notation to denote an agent’s type as P;, where P; is agent i ’s strict ordinal preferences
over individual schools in the set § U {#}}. To be consistent with this literature, in this section,
rather than use utility functions indexed by types €;, we write a P; b to denote that school a € §
is strictly preferred to b € S by student i. Any s such that ¢ P; s is said to be an unacceptable
school for student i. Also, we let R; denote the corresponding weak preference relation,'® and
write P = (P;);e; to denote a profile of preference relations, one for each student. The schools
are not strategic agents, but rather are simply objects to be consumed. The school priorities and
capacities are public information and are known to all of the students.

We use ¢ (P) to denote the matching produced by mechanism ¢ at preference profile P, and
write ¢; (P) for i’s assigned school at matching ¢ (P). Given a mechanism ¢, let

wl(P) = ming; (P}, P_y),

where the minimum is understood to be taken with respect to the true preferences P;. In other
words, Wfb (P/) is the worst possible school for i in mechanism ¢ when she has true preferences
P; and reports preference P/. It is of course possible to set P/ = P; and determine the worst-case
outcome when i reports her true preferences. We define the best possible outcome analogously:

BY(P))= n}}fifcqﬁ,-(P,-’, P_)).

Using this notation, a manipulation P/ is an obvious manipulation of mechanism ¢ (in the sense
of Definition 2) if (i) W’ (P!) P; WP (P;) or (i) BY (P!) P; B (P;). If none of these hold for any
P/, then ¢ is not obviously manipulable.

16 Thatis, aR;b if either aP;b or a = b.
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We illustrate this definition with two mechanisms that are well-known to be manipulable:
the Boston mechanism and the school-proposing Deferred Acceptance algorithm.17 Since nei-
ther mechanism is strategy-proof, there are situations for each mechanism where a student may
benefit from misreporting. However, the types of manipulations are very different for the two
mechanisms: the manipulations in the Boston mechanism are obvious, while those for school-
proposing DA are not.

Example 1 (Boston mechanism). Suppose there are three students, I = {i, j, k} and three schools
S ={a, b, c}. Each school has a capacity g, = 1 for all s € S. The preferences of the students and
the priorities are as follows:

Let ¢ = BM denote the Boston mechanism, and BM;(P) be student i’s assigned school un-
der preference profile P. If all students report their true preferences (those in the table), then
BM;(P) = c. However, if i reports P/ : b,a,c, then BM;(P/, P_;) = b, which she strictly
prefers to c. Thus, P/ is a profitable manipulation, and the Boston mechanism is manipulable.
Further, note that if i reports PE.’ , then she is guaranteed to receive b for sure, no matter what the
other students report, and so this is the worst case from reporting P/ WiB M (P/) =b. It is clear
that the worst case from the truth is WI.B M(p;y =, and so Wi‘B M (P))P; WI.B M (p;). Therefore, P/
is an obvious manipulation.

Example 1 can easily be generalized to markets of any size, and so we have the following
result.

Proposition 1. The Boston mechanism is obviously manipulable.

One easily recognized shortcoming of a “naive” implementation of the Boston mechanism is
that in some rounds, students may end up applying to a school in round k even if it was filled
to capacity in some round k' < k, thereby “wasting” their round & application. Several recent
papers have considered a simple and intuitive modification of the Boston mechanism that adapts
the students’ preferences to prevent them from applying to a school in a given round if there
is no capacity remaining. Dur (2018) shows that in every problem where this Modified Boston
Mechanism (also sometimes referred to as the Adaptive Boston Mechanism) can be manipulated,
the original Boston Mechanism can also be manipulated but that the converse is not true, and so
the Modified Boston Mechanism is less manipulable than the original Boston Mechanism in the
formal sense introduced by Pathak and Sonmez (2013).'® Note that Example 1 is the same for
the Boston or the Modified Boston mechanism, and therefore, although the Modified Boston
Mechanism is less manipulable than the Boston Mechanism in the sense of Pathak and S6nmez
(2013), it is still obviously manipulable.

17 Formal definitions of these and other standard school assignment mechanisms can be found in Appendix A.
18 Various aspects of this mechanism are also considered by Miralles (2009), Mennle and Seuken (2014), and Harless
(2016).
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Next, we turn to the school-proposing DA mechanism. School-proposing DA is also a manip-
ulable mechanism, but the form of the manipulations are much different from those of the Boston
mechanism. This is highlighted by the following example.

Example 2 (School-proposing deferred acceptance). We let ¢ = schDA denote the school-
proposing DA algorithm. Suppose there are 3 students I = {i, j, k} and three schools § =
{a, b, c}. Each school has a capacity g, = 1 for all s € S. The preferences and priorities are
as follows:

If all students report their true preferences (those in the table), then schDA;(P) = c. If i reports
P! :a,®, then schDA;(P], P—;) = a, which she strictly prefers to ¢, and so P/ is a profitable
manipulation. However, reporting P/ exposes i to worse outcomes than reporting her true pref-
erences does. If i submits P;, then c is her worst possible assignment, while if i submits Pl.’ and
j ranks a first, then i will be unassigned, i.e.,

I}_}inschDA,- (P)=cP,@= IginschDA,-(P;).
Therefore, although P/ is a profitable manipulation for i, it is not an obvious manipulation.
(While this is only one example of a manipulation that is non-obvious, Theorem 2 below will
imply that schDA is not obviously manipulable in general.)

Examples 1 and 2 provide an illustration of the different types of manipulations that we will
distinguish. Under the Boston mechanism, when a student ranks her ‘neighborhood school’
first,’ she is guaranteed to be assigned to it. It is very salient to students who participate in
this mechanism that such a manipulation may be beneficial (see the Introduction). On the other
hand, to identify the truncation strategy in Example 2 as a manipulation is much more involved.
It is far more difficult to identify the precise states in which such a deviation will be profitable,
yet it seems intuitively obvious that listing a truly acceptable school as unacceptable may result
in a worse possible outcome than if the agent were to submit her true preferences.

The truncation strategy in Example 2 is just one possible deviation, but we show that this
intuition holds more broadly: no profitable manipulation of schDA is an obvious manipulation.
In fact, we show this not only for schDA, but for a much larger class of mechanisms. To introduce
this class, first define a matching p as stable if there do not exist any blocking pairs, which
are any (i,s) such that s P;u; and either (i) |us| < g5 or (ii) there exists some j € u, such
that i >, j. Further, say that matching . Pareto dominates matching ' if w; R,-,u; for all i €
I and p; P;p; for some i € I. A matching  is said to be stable-dominating if it is stable
or Pareto dominates some stable assignment. A mechanism ¢ is said to be stable if ¢(P) is
stable for all preferences profiles P; similarly, ¢ is a stable-dominating mechanism if ¢ (P) is a
stable-dominating assignment for all P.

19 More generally, if a student ranks first a school s where she has one of the g, highest priorities. This is sometimes
called a neighborhood school in the literature for convenience, though priorities need not be determined geographically
in general.
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Why might one be interested in the class of stable-dominating mechanisms? In school choice
settings, stability is usually interpreted as a fairness constraint: a priority is a “right” to a seat
at a school, and if a student with lower priority is assigned to a school that i desires, then i
has a right to protest the allocation, perhaps by taking legal action (see, e.g., Balinski and Son-
mez (1999) and Abdulkadiroglu and S6nmez (2003)). While desirable, a drawback of stability
is that it is incompatible with Pareto efficiency; indeed, the student-proposing DA mechanism,
which produces the student-optimal stable assignment (an assignment that Pareto dominates ev-
ery other stable assignment), may still be Pareto inefficient. Because of this impossibility, there
has been recent work looking at weakenings of stability that are normatively justified and also
compatible with efficiency. They include partial fairness (Dur et al., 2015), legality (Ehlers and
Morrill, 2017), essential stability (Troyan et al., 2018), and weak stability (Tang and Zhang,
2017).

Indeed, this is more than just a theoretical consideration. Using data from New York City,
Abdulkadiroglu et al. (2009) conduct an exercise in which they start from the student-optimal
stable assignment and Pareto improve it using Gale’s top trading cycles. They find that over 7%
of eighth graders in their sample could be matched to schools they strictly prefer to their DA
assignment without making anyone strictly worse off (though of course stability may be violated
at the new assignment). The procedure Abdulkadiroglu et al. (2009) use for their exercise is
one particular example of a stable-dominating mechanism; there are of course many others, and
because of the potential for significant efficiency gains, a growing literature has recently begun
exploring the class of stable-dominating mechanisms more fully. This literature includes Kesten
(2010), who introduces the efficiency-adjusted DA (EADA) mechanism; Dur et al. (2015), who
introduce the top priority rule; Alcalde and Romero-Medina (2017), who analyze the deferred
acceptance plus top trading cycles mechanism; and Ehlers and Morrill (2017), who generalize
Kesten’s EADA mechanism to allow for a larger class of choice functions on the school side.””
While the allocations produced by these mechanisms satisfy many nice properties that are ex-
plored in the aforementioned papers (most importantly, efficiency), they all suffer from the same
shortcoming with regard to implementation: none are strategy-proof. This follows from a general
impossibility result of Alva and Manjunath (2019), who show that the only strategy-proof and
stable-dominating mechanism is the student-proposing Deferred Acceptance mechanism, which,
as already discussed, is not efficient.?! Our Theorem 2, which we state next, sheds a new light on
this problem: while any stable-dominating mechanism will be manipulable, none of the manip-
ulations will be obvious. This theorem covers all of the efficient mechanisms discussed in this
paragraph (and others), since they are all stable-dominating.”>

Theorem 2. Any stable-dominating mechanism is not obviously manipulable.

20 The Stable Improvement Cycles mechanism introduced in Erdil and Ergin (2008) is also manipulable and stable-
dominating. However, our formal model does not have indifferences in priorities. In our setting, this algorithm is
equivalent to DA. Other stable-dominating mechanisms include the school-proposing deferred acceptance mechanism
(Gale and Shapley, 1962) and deferred acceptance with compensation chains (Dworczak, 2016).

21 See Abdulkadiroglu et al. (2009) and Kesten (2010) for related impossibility results on strategy-proof Pareto-
improvements of student-proposing DA.

22 Note that Kesten’s EADA mechanism (and its generalization due to Ehlers and Morrill (2017)) in particular will be
Pareto efficient, stable-dominating, and satisfies all of the weaker stability definitions cited in the previous paragraph,
further strengthening the argument that its only drawback is lack of strategy-proofness. These results, combined with
Theorem 2, give strong theoretical support for this mechanism.
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Proof of Theorem 2. We prove Theorem 2 using a series of lemmas. We present and prove
these lemmas explicitly, as they may be of independent interest. Lemmas 3 and 4 focus on two
particular classes of reports that have garnered much attention in the literature as focal classes of
manipulations, and show no such report is an obvious manipulation under a stable-dominating
mechanism. These results themselves, as well as Theorem 2, rely crucially on Lemmas 1 and
2, which we prove first. These lemmas provide a tight characterization of the worst possible
assignment under a stable-dominating mechanism.

Given a mechanism ¢, we define a school s to be a safety school for a student i with pref-
erences P; if, for every P_;, we have ¢;(P) R; s. By definition, a student’s worst possible
assignment will be her favorite safety school. We call a school s an aspirational school if there
exists a profile P_; such that s P; ¢;(P) (i.e., if s is not a safety school). We first note that all
stable-dominating mechanisms have the same worst-case assignment.

Lemma 1. If ¢ and  are both stable-dominating mechanisms, then W? (P) = Wiw(P,-) for all
i and all P;.

Proof. Our proof strategy will be to first find the worst-case outcome under a particular stable
mechanism, namely, school-proposing DA. We label this school w. Then, we will show that if
¢ is a stable-dominating mechanism, the worst-case under ¢ is also w. Since ¢ is an arbitrary
stable-dominating mechanism, this will establish the result.

Formally, for a student i with preferences P;, define:

w= n}lax {s : forevery P_;, schDA;(P) R; s}. g}

Note that w is a safety school under schDA, and in fact, is i’s most-preferred safety school.
Therefore, w is a lower bound on i’s worst possible assignment under schDA. To establish that
w is, in fact, the worst possible assignment, we just need to find one profile P_; such that
schDA;(P) = w. This is trivial if @ is i’s favorite school.”> Otherwise, let s be the school i
ranks just above w (that is, there is no s such that s P; s’ P; w). Since s is not a safety school,
there exists a P_; such that s P; schDA;(P). However, since w is a safety school for schDA,
schDA;(P) R; w. Therefore, schDA;(P) = w (since s was chosen so that there is no s’ such
that s P; s P; w). This establishes that w is the worst possible assignment under schDA.

Now, define a matching A = sch D A(P). Note that since ¢ is stable-dominating, for any P’_i,
&i (P;, Pi,-) R; schDA;(P;, P’_I.) R; 11124; therefore, w is a lower bound for i under ¢. If we can
find one profile P ; such that ¢; (F;, Pi,-) = w, this will establish that w is in fact the worst
possible assignment for ¢. If A is not a Pareto efficient matching, then for each j # i, define
PJ’. :=2X;,0 (where A; = schDA;(P) and it is understood that @, is replaced by ¥). It is
straightforward to verify that schDA;(P;, P’ ;) = w and schDA;(P;, P’ ) is Pareto efficient.
Since schDA(P;, P’ ;) is stable and Pareto-efficient, it is the student-optimal stable matching,
so the lattice of stable matchings is a singleton. Thus, if ¢ (F;, Pil.) Pareto dominates any sta-
ble matching, then it Pareto dominates schDA(P;, Pil-), which contradicts the efficiency of
schDA(P;, P_;). Thus ¢(P;, P')) is stable, and equal to schDA(P;, P;), and in particular,
@i(P;, P)) =schDA;(P;, P';))=w. O

23 In fact, in this case, for every P_;, schDA;(P) = w.
24 Ttis well known that schDA produces the student-pessimal stable assignment. That is to say all students weakly prefer
any alternative stable assignment to the schDA assignment. See Roth and Sotomayor (1990) for a complete discussion.
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For a stable-dominating mechanism, the aspirational schools are determined by Hall’s The-
orem (Hall, 1935), which gives a necessary and sufficient condition for finding a matching that
covers a bipartite graph. Intuitively, consider a student i whose favorite school is a. She is only
guaranteed a if she has one of the g, highest priorities; otherwise, if these students all rank a first,
she will receive a worse assignment (under a stable or stable-dominating assignment). Suppose
b is i’s second favorite school. The key observation is that i may be guaranteed to be assigned
to a or b, even if she does not have one of the g, highest priorities at a nor one of the g; highest
priorities at b. This occurs when there are sufficiently many students ranked higher than her at
both a and b (as these students can only be assigned to one school).

Lemma 2. Let ¢ be a stable-dominating mechanism and for each school s', let D;(s"Y={j €I :
J >y i}. Consider a student i with preferences P;. School s is a safety school for student i if and
only if there exists a set of schools S' C S such that s" R; s for all s' € §' and

Y gy > |Uyes Di(s)). @)

s'es’

Proof. We first show the if direction. Fix a school s, and suppose there exists a set §’ C § such
that for each 5" € §’, ' R; s and Equation (2) holds. Fix a profile P_;, and let 4 = schDA(P);
specifically, u; is i’s worst possible stable assignment. Suppose for contradiction that s P; ;.
Note that each school s’ € §’ is assigned to its capacity (or else w is not stable). Therefore,
by Equation (2), there must exist a school s’ € §” and a student j ¢ D;(s’) such that u; =s’'.
But i >, j (by the definition of D;(s")) and s’ P; u;; therefore, i and s” block p, contradicting
the stability of . Therefore, w; R; s. Since ¢ is stable-dominating, ¢;(P) R; w;. Therefore,
@;(P) R; s. The same argument can be made for any profile P_;, and so s is a safety school.

For the other direction, fix a school s, and assume that for every S’ C S such that s’ R; s for
all s € §', Equation (2) fails, i.e., for all such §’, the following is true:

> 4v <|Uses Di(s)]. ©)
s'es’
In words, for every collection of schools weakly preferred to s, there are more students ranked
higher at one of these schools than the total capacity of all of these schools. We will show that if
Equation (3) holds for any possible set of schools i weakly prefers to s, then we can fill all of the
seats at the preferred schools with students ranked higher than i. When these students rank their
respective assignments first, it is not possible for i to be placed in a school weakly preferred to s
in any stable assignment (or any Pareto improvement of one).
The result is an application of Hall’s Theorem. Let U = [5’ 8’ R; s}. We define a bipartite

graph as follows. For each s’ € U create gy vertices {v},, e, vgf/ } and define X to be the set

of these vertices. Create a vertex for each student, and label the set of all such vertices Y. We
create a graph by drawing an edge between student j and vertex vf, (the kth copy of school s)
if and only if j > i. In this graph, the neighborhood of any vertex v, denoted N (v), is the set
of vertices it shares an edge with. For a set of vertices W € X, N(W) is defined as U,,cew N (w).
Note that by definition, there are no edges between student i and any v € X, and so, N (i) = {@}.
Hall’s Theorem says the following:

Theorem (Hall, 1935). If |W| < |N(W)| for every subset W C X, then there exists a matching
that entirely covers X.
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We will show that in the graph we have constructed, the conditions for Hall’s Theorem are
satisfied. Take some W C X. Let T be the schools that have at least one copy in W. Note that for
every t € T, tR;s. Therefore, Equation (3) applies, i.e.,

Y a1 User D). 4)

teT

By construction, N(W) ={j : 3t € T s.t. j >, i}. Written differently,
N(W) =Uer D;(2). (3)

For each school ¢ € T, there are at most g; copies of t in W, so |W| < ZteT g;. This implies

Wl <) i <|Urer Di(t)| = IN(W)],

teT

where the second inequality follows from Equation (4) and the last inequality follows from Equa-
tion (5). Therefore, by Hall’s Theorem, for each school that i weakly prefers to s, we can assign
every copy of that school to a student ranked higher than her. Given this vertex cover, we induce
a matching A, defined as follows: if student j was assigned to a copy of school s/, then we set
Aj = s'; if student j was not matched, we set A j = #. We then define a preference profile P_;
such that, for every j # i, we set P; := A, @ (where it is understood that @, @ is replaced by @).
It should be clear from our construction that under P, there is only one stable assignment: each
student j 7 i is assigned to A ;, while i is assigned to the school she ranks just below s. It is also
clear that this assignment is Pareto efficient; therefore, any stable-dominating mechanism must
make the same assignment. In particular, s P; ¢; (P), and consequently, s is not a safety school
for i, which is a contradiction. O

The following corollary is immediate from the proof of Lemma 2 and will be helpful in the
proof of the main theorem.

Corollary 1. Let ¢ be a stable-dominating mechanism, and consider a student i with preferences
P;. If s is an aspirational school, then there exists a preference profile P—; such that ¢; (P) =s.

Recall our main goal is to show that stable-dominating mechanisms have no obvious manip-
ulations. However, there are actually two special classes of manipulations that have been widely
studied in the literature, and thus deserve particular attention.

The first is a class of strategies called truncations. Formally, P/ is a truncation of a preference
list P; containing k acceptable schools if P contains k" < k acceptable schools and both P; and
P/ rank the first k" schools in an identical manner. Many papers in the literature have focused
on truncation strategies as an interesting and focal class of deviations. For instance, in searching
for advice for participants in hospital-resident matching markets, Roth and Rothblum (1999)
show that in low-information environments, any profitable deviation of the hospital-proposing
DA algorithm is a truncation.”

25 Other papers that have analyzed truncation strategies include Roth and Vande Vate (1991), Roth and Peranson (1999),
and Ehlers (2008). Kojima and Pathak (2009) consider a generalization of truncation strategies they call dropping strate-
gies and show that dropping strategies are exhaustive when searching for manipulations for agents with a capacity greater
than 1 (in the school choice model here, only the students are strategic, and they have unit capacity, i.e., they will only
be matched to at most one school).
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Lemma 3. Let ¢ be a stable-dominating mechanism. For any student i, no truncation strategy is
an obvious manipulation of ¢.

Proof. Let P/ be any truncation strategy. It is straightforward to show that Bf’ (F;) is i’s favorite
school. Therefore, the best-case outcome cannot be better under any alternative strategy. Let w
be as defined in Lemma 1 (i’s worst case assignment under any stable-dominating mechanism).
First, suppose P; truncates i’s preferences before w. Let P_; be a preference profile such that
DA;(P) =w (w is the worst possible assignment under DA, so such a profile exists).2® Under
DA, when the other students submit preferences P_;, i runs out of acceptable schools to apply
to under preferences P’ ;» therefore, DAi(Pl.’ , P_i) = #. In particular, under Pl.’ , the worst-case
assignment under DA is being unassigned. Since ¢ has the same worst-case assignment as DA,
the worst-case under P; (w) is better than the worst case under P/ (#). Therefore, P/ is not an
obvious manipulation.

Finally, suppose instead that P/ truncates i’s preferences after w. Let P_; be a preference pro-
file such that D A;(P) = w. Consider an alternative profile f’_i where each j # i ranks DA ;(P)
first and the other schools arbitrarily. By construction, under profile (P/, P_}), there is a unique
stable assignment; this stable assignment is Pareto efficient; and under this assignment, i is as-
signed to w. Since ¢ is a stable dominating assignment, ¢; (Pi’, Is_i) = w. Therefore, i’s worst
possible assignment from reporting P/ is either w or else a worse school. Therefore, P/ is not an
obvious manipulation. O

Note that truncations do not alter the ordering of any schools above the truncation point. The
second main class of manipulations that we rule out before completing the proof of Theorem 2
are those that do alter the relative ordering of some schools. Following Maskin (1999), we say
that P/ is a non-monotonic transformation of P; at s if there exists some s’ such that s P; s',
but s” P/ s; in other words, in moving from P; to P/, there is some school s that “jumps” over
s in i’s ranking. The next lemma shows that under a stable-dominating mechanism ¢, it is never
an obvious manipulation for a student to submit a non-monotonic transformation relative to w,
her worst possible assignment under ¢.

Lemma 4. Consider any stable-dominating mechanism ¢. Let w be i 's worst possible assignment
under preferences P;. Any non-monotonic transformation at W is not an obvious manipulation.

Proof. It is straightforward to show that Bf (P;) is i’s favorite school. Therefore, the best-case
outcome cannot be better under any alternative strategy. Let w be as defined in Lemma 1 (i’s
worst case assignment under a stable-dominating mechanism). Consider a non-monotonic ma-
nipulation P/, i.e. a P/ such that there exists some s € § such that s P/w, but w P;s. Intuitively,
this will not be an obvious manipulation because it is now possible for i to be assigned to s,
whereas under her true preferences, she is always assigned to a school she strictly prefers to s.
We show this formally. In particular, fix s as i’s favorite such school, i.e.:

5= max[s’ls’ P/ wand w P; s'}.
P

26 Note that DA(-) always refers to the student-proposing version of deferred acceptance (we use schDA(-) to refer
to the school-proposing version). Also note, though, that w is the worst-case under both versions (as well as under any
stable-dominating mechanism), by Lemma 1.
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Each school s’ such that s’ P; w satisfies Hall’s matching condition, which is to say it is
possible to fill all of their seats with students ranked higher than i according to > . By the nature
of Hall’s condition, this is also true for any subset of these schools. In particular, {s’ |s" P’ s} C
{s’ls’ P; w} and consequently, each of the schools in {s|s" P;’ s} is an aspirational school under
P/,

z Therefore, for i’s worst possible assignment under PE.' , which we label w’, it must be true that
s R w'. Therefore, by Corollary 1, there exists a profile P”; such that ¢;(P’) = 5. Since w P;s
and i is never assigned to a school worse than w under P;, P/ is not an obvious manipulation. O

We are now ready to complete our proof of Theorem 2. Let ¢ be a stable-dominating mech-
anism, and consider a student i of type P;. Let w be as defined in Lemma 1. We classify
manipulations into two possible types: “monotonic” or “non-monotonic” (where monotonicity is
relative to w).

1. Monotonic manipulation: For all a € § such that a P/, we have a P;w.
2. Non-monotonic manipulation: There exists some a € S such that a P/w, but w P/a.

We have already proven in Lemma 4 that no non-monotonic manipulation is an obvious ma-
nipulation. Thus, consider a monotonic manipulation P;. Condition (ii) can be dispensed with
immediately for any manipulation P/, as it is easy to see that the best case from truth-telling
is that agent i gets her (true) top choice. Next, consider condition (i). If w is ranked first under
Pi’ , then if all students rank all schools as unacceptable, i is assigned to w. Therefore, the worst
possible case under P/ cannot be strictly better than under P;. Now suppose w is not ranked
first under P/. For Hall’s condition in Lemma 2 to be satisfied, every possible subset of schools
preferred to w must have sufficient total capacity. Under a monotonic transformation, there are
fewer possible subsets of schools preferred to w; therefore, Hall’s condition continues to hold. In
particular, if s Pi’ w, then s is an aspirational school. Therefore, if w is a safety school, it is the
most preferred safety school, and by the argument in Lemma 2, i’s worst possible assignment.
Alternatively, w could be an aspirational school, but in either case, from Corollary 1, there exists
aP ; such that ¢; (P’) = w. From this, we can conclude that the worst case for i (under true
preferences) from submitting P/ is weakly worse than submitting her true preferences. O

4.2. Two-sided matching

Two-sided matching is closely related to school choice, and the results in this section will be
immediate corollaries from the results above. The first model of two-sided matching appeared in
the seminal paper of Gale and Shapley (1962), where the two sides consist of men and women.
For convenience, we follow this classic literature and partition the set of agents as I =M U W,
where M is a set of “men” and W is a set of “women”. Such models are also often used in other
contexts, such as college admissions (also discussed in Gale and Shapley (1962)), where the two
sides are relabeled students and colleges, or labor markets, where the two sides are relabeled as
workers and firms.

Each man m € M has a strict preference relation P,, over W U {J}, where @ is interpreted as
remaining unmatched. Similarly, each woman w € W has a preference relation P, over M U {#}.
A matching is a function u : M UW — M U W U {J} where u,, = w denotes that man m
is matched with woman w (and thus u,, = m); for any i € I, u; = () means that agent i is
unmatched. Stability is also defined equivalently as above. We additionally say that matching p
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is individually rational if p; R;@. A mechanism ¢ is individually rational if ¢; (P) R; @ for all
P, i.e., if it always produces an individually rational matching.

The key difference between two-sided matching and school choice is that both sides are strate-
gic agents and are included in welfare considerations. Thus, while there is a strategy-proof and
stable mechanism in the school choice model (student-proposing DA), this no longer holds when
both sides are strategic, a result first shown by Roth (1982).

Theorem (Roth, 1982). There exists no mechanism that is both stable and strategy-proof.

Sonmez (1999) considers a far more general environment than just two-sided matching. His
main result is much stronger than what we present, but in the context of two-sided matching with
strict preferences, it can be stated succinctly.

Theorem (Sénmez, 1999). Given a matching problem (M, W, Py, Pw), a mechanism ¢ is in-
dividually rational, Pareto efficient, and strategy-proof if and only if there is a unique stable
assignment and ¢ chooses the stable assignment.

Neither of these results continue to hold when we replace strategy-proofness with NOM. In
particular, our next result shows that any stable mechanism is individually rational, Pareto effi-
cient, and NOM. This has implications for markets such as the NRMP, which matches residents
to hospitals using the doctor-proposing DA mechanism. While this mechanism (as well as any
other stable mechanism) is technically manipulable by the hospitals, it is not obviously manipu-
lable, and thus hospitals may find it difficult to execute profitable manipulations in practice.

Theorem 3. Any stable mechanism is individually rational, Pareto efficient, and not obviously
manipulable.

Proof. It is clear that any stable mechanism is individually rational and Pareto efficient. That
a stable mechanism is NOM follows from Theorem 2. In particular, if a woman (man) had an
obvious deviation, then she would also have an obvious deviation when the men (women) are
treated as objects, which would contradict Theorem 2. O

4.3. Auctions

Our remaining applications depart from what we have considered so far in that we allow for
transfers. We also return to the notation of Section 2, where types are denoted by 6;, outcomes
by x, and utility functions u; (x; 6;).>” We begin by considering a simple first-price auction for a
single good, and show that it is obviously manipulable.

An outcome is now denoted x = (y, t), where y € {0, 1} is an allocation vector such that
d>:yi<landte R/!'is a vector of transfers. Agent i’s type space is ®; C R, and i’s utility
function when his type is 6; € ©; is u; (¥, 1); ¢;) = 1{3;=116i — t;. In a first-price auction, each
agent submits a bid (which we take as equivalent to reporting his type), the highest bid wins and

27 Note that these utility functions need not be given cardinal interpretations, i.e., we only assume that agents have
ordinal preferences over allocations that are increasing in money. Also, in this subsection and the next, to be consistent
with much of the auctions literature, we allow for continuum outcome/type spaces. The fundamental analysis would be
unchanged if we assumed only a finite space of possible transfers.
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pays his bid, and all other bidders pay 0. Let ¢ 7 (9) = (77 (9), t¥'F (6)) denote the first-price
auction mechanism, where y*%(9) =1 and +t/'*(6) = 6; if and only if 6; > 6; for all j #1i, and
yFP (0) =1FF(6) =0 otherwise.”®

Proposition 2. The first-price auction is obviously manipulable.

This proposition follows straightforwardly from the definition. To see this, consider an agent
of type 6;, and an alternative report 0 < 9; < 6;. Under 6;, both the worst and best cases are 0:
ming_, u,-(qf)FP (6i,6-i);6;) =maxg_, ui(quP (6;,6—;); 6;) = 0. Under 9{, the worst-case is still
0 (when i loses), but the best case is strictly better: maxg_; u; (ng P (9; ,0.,):0) =6, — 91.’ >
0 =maxy_, u; (@F? (8/,6_;);6;), and thus, according to Definition 2, reporting 6/ is an obvious
manipulation.

In single-unit auctions, the first-price auction is (obviously) manipulable, while the second-
price auction is famously strategy-proof (Vickrey, 1961). For our purposes, multi-unit auctions
are actually more interesting, because while the analogue of the first-price auction, the pay-as-bid
auction, is still (obviously) manipulable, the analogue of the second-price auction is no longer
formally strategy-proof. In this section, we show that while this auction is manipulable, it is not
obviously so.

The auctioneer now has K identical objects to be sold. Let y; € {0, 1, ..., K'} denote the num-
ber of units assigned to agent i, and #; € R be the payment of agent i. Defining y = (y1, ..., ¥n)
and t = (t1, ..., ty), an outcome is a vector x = (y, ¢) such that ), y; < K. Bidder i’s type is a
K -dimensional vector 8; = (61.1, e, GI.K ). Because the objects are identical, it is without loss of
generality to assume that 91.1 > 91.2 > > BI.K for all 6; € ®;. The utility of a bidder of type 6; is
wi ((y,1);6;) =Y, 0F — 1.

The natural counterpart of the first-price auction is the pay-as-bid auction (sometimes also
called the discriminatory price auction). each bidder submits a vector of bids for each of the K
units (which we take as reporting her type, and which may be 0 for some units), and pays the
sum of her winning bids. Indeed, the first-price auction introduced above is a special case of a
pay-as-bid auction, and the same arguments can be used to prove the following.

Corollary 2. The pay-as-bid auction is obviously manipulable.

In a (K + 1)—price auction, each agent again submits a bid for each of the K units (some of
which may be 0). All of the bids are ordered from highest to lowest. The K units are awarded
to the K highest submitted bids, with the price of each unit equal to the (K + 1)th highest bid.
Note that when K = 1, we recover the second-price auction, which is strategy-proof. While for
any K > 1 the (K 4 1)—price auction is not strategy-proof, it is intuitively much less susceptible
to manipulation than the pay-as-bid auction. Qur next result formalizes this intuition.”

28 In the event of a tie, the winner is chosen randomly among those who submitted the highest bid.

29 In the specific context of Treasury auctions, Friedman (1960) proposed a switch from a pay-as-bid auction format
to (K + 1)-price auction format (sometimes called a uniform-price auction), precisely as a way to reduce strategizing
and bid shading. His proposal was eventually adopted, and is still used today. Our results provide a formal theoretical
justification for this intuition (see also Pathak and Stnmez (2013) and Azevedo and Budish (2019) for complementary
analyses). Ausubel et al. (2014) compares the efficiency and revenue properties of pay-as-bid and uniform price auctions
in Bayes-Nash equilibrium.
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Theorem 4. The (K + 1)—price auction is not obviously manipulable.

Proof. Let X! denote the (K + 1)-price auction mechanism. Consider an agent of type 6;, and
first consider reporting truthfully. It is simple to calculate that ming_, u; (¢K+' 6;,0-;);6,)=0
and maxy ui(qbK"'l 6;,6_;);6;) = Z{;l Bz.k. We must show that for any manipulation éi #6;,
parts (i)-(ii) of Definition 2 all hold. First, it should be clear again that for any (;l—, we have
ming , u; (@K1 (6;,6_;); 6;) = 0 and maxg , u; (@XT1(G;,6_;);6;) = Y p_, 6%, Therefore, we
have ming_, u; (¢X1(G;,0_;); 6;) = ming_, u; (¢%+1(6;, 6_;); ;) and maxy_, u; (9¥T1(G;,6_;),
0_;) =maxy_, u; (¢K+1 (6;,6—_;),60_;), and so parts (i) and (ii) of Definition 2 are satisfied. O

4.4. Bilateral trade

As a final application, we consider the classic bilateral trade setting. The set of agents is
I ={B, S}, where B is a potential buyer and § a seller of a single object. We normalize the type
spaces for both the buyer and the seller to @5 = @p = [0, 1], where 65 € Og is the seller’s cost
to produce the object, and 05 € O is the buyer’s value for the object. Each agent knows their
own type, but not the type of the other agent.

A mechanism here is written ¢ (6) = (y(@), 5 (8), ts(9)), where for any 6 = (03, fs), y(€) €
{0, 1} denotes whether or not trade occurs, ¢g(8) is the transfer from the buyer, and #5(8) is the
transfer to the seller. Given a mechanism ¢ and reported types (ég, ] ), utilities are thus written

Up(¢ Bz, bs); 08) =05y (Bp, bs) — t Oz, bs)
Us(¢(6g, 05); 0s) = —05y(Og, 0s) + t5(0p, Os)

We first consider one of the simplest and most well-known mechanisms for this setting, the

double auction mechanism analyzed by Chatterjee and Samuelson (1983). In this mechanism,
Op+0s .

each agent reports her type. If 05 > 65, then trade occurs at a price p = “%5-%; otherwise, no
trade occurs, and no transfers are made. Formally:
1, 05205 et g >0
0) = ts@ =tg@®) =1 2
y(©) {0, 05 < O 5(8) =1tp(@) {0, 05 < O

Proposition 3. The double auction mechanism is obviously manipulable.

To see this, consider a buyer of type 6p, and let 8 = 8p — € (a completely analogous argu-
ment can be made for the seller). Then, it is simple to calculate that maxq; Up (¢ (9"3, As);0) =
0g/2 + €/2, while maxg; Up(¢ (05, 0s); ) = 0p/2. Therefore, 6} is an obvious manipulation.

Myerson and Satterthwaite (1983) prove a general theorem that in this setting, there is no
efficient, individually rational, and Bayesian incentive compatible mechanism (without the infu-
sion of an outside subsidy). One common interpretation of this negative result is that two-sided
private information introduces “transaction costs” that preclude efficient bargaining (a la Coase,
1960); in other words, in the presence of asymmetric information, there is a fundamental conflict
between incentives and efficiency.

More recent work on mechanism design under ambiguity has re-evaluated these claims by
considering agents who may not be classical expected utility maximizers, but instead are am-
biguity averse. For instance, De Castro and Yannelis (2018) argue that ambiguity “solves” the
conflict between incentives and efficiency. In particular, they show that if agents have maximin
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preferences, then an efficient, incentive compatible, individually rational, and budget-balanced
mechanism exists, and further, one such mechanism is the double auction mechanism described
above. The intuition is that the worst case from any report is that trade does not occur, and so
when agents evaluate outcomes using maximin preferences, all reports are equivalent, and every-
one is willing to report truthfully. While this requires an arguably quite strong assumption that
agents are completely pessimistic and certain trade will not occur, Wolitzky (2016) considers a
more general model of ambiguity averse agents and shows that there are still conditions under
which the conclusion of the Myerson-Satterthwaite theorem is “reversed”.

The agents in our model also compare worst (and best) case outcomes, but in a different way,
and in particular one that reinforces Myerson and Satterthwaite’s original insight. To see what
we mean, first, note that Proposition 3 shows that double auctions are obviously manipulable (an
extreme form of ron-incentive compatibility), which is in contrast to results that show such a
mechanism is incentive compatible when agents are ambiguity averse. Second, we can extend
this beyond double auctions and further prove an analogue to Myerson and Satterthwaite’s im-
possibility theorem for general mechanisms. Following this literature, we consider mechanisms
@ (0) = (y(8), 1g(0), ts(6)) that satisfy the following properties "

1. Efficiency: y(0p,6s) =1 if and only if 5 > 6.
2. Individual rationality: Ug (¢ (€p, 0s); 0p) = 0 and Us(¢ (05, Os); 8s) = 0 for all (83, Os).
3. (Weak) budget balance: t5(#) <tz () for all 6.

We then have the following result.

Theorem 5. Every efficient, individually rational, and weakly budget balanced mechanism is
obviously manipulable.

Proof. Assume that ¢ (@) = (y(0),t5(9),15(0)) is an efficient, individually rational, weakly
budget-balanced mechanism that is not obviously manipulable. Define

ps = ts(0
Ds gs.LIIIy%)=1 s(0)

= min tg(f).
Ppg 8 st y(6)=1 5

In words, pg is the highest possible price the seller may receive, conditional on selling the object
and p B is the lowest possible price the buyer may pay, conditional on buying the object.

Now, note that efficiency combined with individual rationality imply the following about tg
and 1g:

ts(0p, 0s) > Os for all O > O5 (6)
tg(0p,0s) < 0p for all (65, 0s). )]
(for the first line, we must have y(0p,0s) = 1 for all 6p > 05, by efficiency; IR then says

ts(@p,0s) = Os. The second line is immediate from the buyer’s IR constraint.) Now, equations
(6) and (7) imply ps > 1 and Pp= 0 (for the former, substitute (fg, 8s) = (1, 1), and for the

30 Myerson and Satterthwaite (1983) assume an interim version of individual rationality; however, one of the goals of
our project is to move away from a reliance on prior distributions, and so an ex-post formulation of individual rationality
is more appropriate for our setting.
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latter, substitute (€, fs5) = (0, 0)). By weak budget-balance, t5(6p,6s) < tp(6p,0s5) <0p <1
for all (g, 8s), and so the former inequality is actually an equality: ps = 1.

Consider some type of the seller 85 < 1. Note that pg = 1 implies that maxg: Us(¢ (9_;3, D);
fs) =1 — Bs. For ¢ to be not obviously manipulable then requires that maxg: Us(g (07, 05);
fs) > 1 — @5 for all Os; in other words, we must have maxg, t5(9"3, fs) = 1 for all f5. Since
tg (9"3, 0s) < 6%, the only possibility is that #5(1, 85) = 1 for all 5. On the other hand, consider
a buyer of type 6p > 0, and note that maxg: Us(¢(0, 93}; 6p) = 6p. Again, NOM implies that
maxy: Ugp(¢ (03, 9;); 6p) > 0 for all #p; in other words, for all £, there must exist some 9_’s
such that y(6p, 93‘) =1 and 13(f5, 955) = (. Budget balance and the seller’s IR constraint imply
that the only possibility is 93 =0, i.e., for all fp, we must have y(fg,0) =1 and t5(fp,0) =0.

To summarize, we have shown that if ¢ is an efficient, individually rational, weakly budget
balanced, and NOM mechanism, then the following must be true: (i) y(1,8s) = 1 and t5(1, 6s5) =
1 for all 8g, and (ii) y(6p,0) =1 and t5(fp,0) = 0 for all 9. In particular, setting 5 = 0
in (i) and Op = 1 in (ii) gives 75(1,0) = 1 and #5(1,0) = 0, which contradicts weak budget
balance. O

5. Conclusion

Market design is fortunate in that there are known, strategy-proof mechanisms that achieve
attractive market outcomes. At the same time, strategy-proofness is a constraint that limits the
choice of mechanisms. In markets where a planner attempts to achieve a more desirable outcome
by using a non-strategy-proof mechanism, they must be cognizant of the fact that agents may try
to manipulate the mechanism to their advantage. In this paper, we argue that some manipulations
are easier to identify than others, and provide an intuitive and tractable taxonomy for determining
when it will be obvious to participants that a mechanism can be manipulated. The Boston mech-
anism and pay-as-bid multi-unit auctions are examples of obviously manipulable mechanisms.
Alternatively, the (K + 1)—price auction and doctor-proposing DA mechanism (for two-sided
matching markets) are examples of mechanisms that are manipulable, but are not obviously ma-
nipulable. Kesten’s EADA mechanism is also manipulable, but not obviously so. While it has
not yet been used (to our knowledge) in practice, the many desirable features of this mechanism
outlined in other work, combined with the fact that EADA is not obviously manipulable, suggest
that it may be worthy of further investigation.

Our paper opens up several avenues for further investigation. For instance, we defined an ob-
vious manipulation with respect to truthful reporting as the default focal strategy. However, it
is possible to generalize the idea to compare any two strategies, and look for an equilibrium in
‘no obvious deviations’. Additionally, we restricted attention in this paper to direct revelation
mechanisms. While this an important class in its own right, with many market design applica-
tions, it would nevertheless be interesting to explore indirect mechanisms as well. For instance,
which mechanisms in this broader class can be identified as manipulable by cognitively limited
agents? If such a mechanism has no obvious deviations, is there a corresponding NOM direct
mechanism? These are interesting questions for future work.

Appendix A. Definition of the mechanisms

In this appendix, we give formal definitions of the matching mechanisms analyzed in Sec-
tion 3.
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Boston Mechanism:

For a given problem P, BM mechanism selects its outcome through the following mecha-
nism:

Step 1: Each student applies to her most preferred school. Each school s accepts the best students
according to its priority list, up to g5, and rejects the rest.

Step k > 1: Each student rejected in Step k — 1 applies to her kth choice. Each school s accepts
the best students among the new applicants, up to the number of remaining seats, and rejects the
rest.

School-Proposing DA Mechanism:

For a given problem P, school-proposing DA mechanism selects its outcome through the
following mechanism:

Step 1: Each school s proposes to top g, students under ;. Each student i accepts the best
proposal it gets according to P;, and rejects the rest.

Step k£ > 1: Each school s proposes to top g, students under >; who have not rejected it yet.
Each student i accepts the best proposal it gets according to P;, and rejects the rest.

Top Trading Cycles Mechanism:

For a given problem P, TTC mechanism selects its outcome through the following mecha-
nism:

Step 0: Assign a counter to each school and set it equal to the quota of each school.

Step 1: Each student points to her most preferred school among those remaining. Each re-
maining school points to the top-ranked student in its priority order. Due to the finiteness there
is at least one cycle.’! Assign each student in a cycle to the school she points to and remove her.
The counter of each school in a cycle is reduced by one and if it reduces to zero, the school is
removed.

Step k > 1: Each student points to her most preferred school among the remaining ones. Each
remaining school points to the student with the highest priority among the remaining ones. There
is at least one cycle. Assign each student in a cycle to the school she points to and remove her.
The counter of each school in a cycle is reduced by one and if it reduces to zero, the school is
also removed.

Deferred Acceptance-Top Trading Cycles Mechanism

For a given problem P, DA-TTC mechanism selects its outcome through the following mech-
anism:

Round DA: Run the DA mechanism. Update the priorities by giving the highest priorities for
each school to the students assigned to it.

Round 7' T C: Run the TTC mechanism by using the preference profile and updated priorities.
Efficiency-Adjusted Deferred Acceptance Mechanism:

In order to define the mechanism selecting the outcome of EADAM, we first present a notion
that we use in the definition. If student i is tentatively accepted by school s at some step ¢ and
is rejected by s in a later step ¢’ of DA and if there exists another student j who is rejected
by sinsteps” €{r,t +1,...,t' — 1}, then i is called an interrupter for s and (i, s) is called an
interrupting pair of step #'. Under EADAM, each student decides to consent or not. For a given
problem P and consent decisions, EADAM selects its outcome through the following algorithm:
Round 0: Run the DA mechanism.

3L A cycle is an ordered list of distinct schools and distinct students (s1,i1,s2,..., Sk, ix) where 5| points to iy, iy
points to s, ..., sk points to i, i points to sq.
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Round & > 0: Find the last step of the DA run in Round k£ — 1 in which a consenting interrupter is
rejected from the school for which she is an interrupter. Identify all the interrupting pairs of that
step with consenting interrupters. For each identified interrupting pair (i, s), remove s from the
preferences of i without changing the relative order of the other schools. Rerun the DA algorithm
with the updated preference profile. If there are no more consenting interrupters, stop.
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