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1. INTRODUCTION

The theory of matching has been extensively developed for markets in which the agents
(students/schools, hospitals/residents, workers/firms) have maximum quotas that
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6:2 D. Fragiadakis et al.

cannot be exceeded.1 However, in many real-world markets, minimum quotas are also
present, and there is a lack of mechanisms that take minimum quotas into account.
The main contribution of this article is to provide new strategyproof mechanisms that
fill all minimum quotas while at the same time satisfying other important desiderata
(fairness and efficiency) as much as possible.

There are many examples of matching problems with minimum quotas. School dis-
tricts may need at least a certain number of students in each school for the school to
operate, as in college admissions in Hungary [Biró et al. 2010]. In medical residency
matching markets in many countries, rural hospitals suffer from doctor shortages,
and authorities want to ensure that a minimum number of residents are assigned to
each region. The United States Military Academy (USMA) solicits cadet preferences
over assignments to various army branches, and each branch has minimum manning
requirements. In the context of schools, minimum quotas are important not only in as-
signing students across schools but also in assigning students to classes within schools.
For example, computer science students at Kyushu University must all complete a lab-
oratory requirement. Students submit preferences over the labs, but each lab has a
minimum and maximum quota. Matching with minimum quotas is also important to
firms that want to assign employees to specific projects: for example, newly gradu-
ated doctors often must complete an intern year in which they rotate through various
departments in a hospital. The hospitals consider doctor preferences when making
assignments, but each department has a minimum staffing requirement that must be
satisfied above all else.

Because standard matching mechanisms cannot accommodate minimum quotas ex-
plicitly, many markets will impose artificially lower maximum quotas. For example,
in Japan, the Japan Residency Matching Program (JRMP) lowers the capacities of
hospitals in urban areas such as Tokyo so that more doctors will be forced to apply to
hospitals in rural areas.2 Similarly, an October 1, 2007, memorandum from the army
to USMA describes an assignment algorithm in which the quotas of popular branches
are reduced to ensure that all branches will meet their manning requirements.3

We call the approach described earlier imposing artificial caps. Notice that imposing
artificial caps will also obscure the presence of minimum quotas in markets in which
they are truly present, but in which designers simply lack good tools to handle them.
Though the ultimate goal is to satisfy the minimum quotas, artificial caps only do so
implicitly, by eliminating positions ex ante, without regard to agent preferences. This
leads to efficiency losses, since after the preferences are submitted and the algorithm is
run, some institutions in high demand will end up below their true capacities, making
it possible to reassign the agents and make everyone better off. Our mechanisms
recover these efficiency losses by lowering capacities at popular institutions only when
it is actually necessary, which depends on the submitted preferences. Importantly, we
show that these efficiency gains can be realized without compromising any incentive
or fairness properties.

More specifically, we start by introducing standard axioms that have been identified
as key in the literature without minimum quotas: fairness, nonwastefulness, and strat-
egyproofness.4 Because of the importance of strategyproofness to many policymakers,

1See Roth and Sotomayor [1990] for a comprehensive survey of many results in this literature.
2See Kamada and Kojima [2015].
3See Sönmez and Switzer [2013] and Sönmez [2013], which study other aspects of this market unrelated to
minimum quotas.
4Fairness means that if one student envies the assignment of another, then the second student must have a
higher priority at his or her assigned school than the first. It is also called “no justified envy.” Nonwastefulness
is an efficiency requirement that says that if a student prefers some school to his or her current assignment,
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we take it as a key design requirement. With minimum quotas, matchings that are
simultaneously fair and nonwasteful may not even exist, and so at least one must be
weakened. Because different institutions may weigh the relative importance of fairness
and nonwastefulness differently, we provide two mechanisms.

Our first new mechanism, extended-seat deferred acceptance (ESDA), works by di-
viding the seats into two classes. Each school is given a number of regular seats equal
to its minimum quota, and a number of “extended” seats equal to the difference be-
tween its minimum and maximum quota. Students apply first to the regular seats and
then to the extended seats according to their preferences. By restricting the number
of extended seats that can be assigned in an appropriate manner, we ensure that all
of the regular seats will be filled and all minimum quotas will be satisfied. The second
mechanism, multistage deferred acceptance (MSDA), runs by first reserving a number
of students such that, no matter how the remaining students are assigned, we will
have enough students reserved to fill any remaining minimum quotas. The students
not reserved are then assigned according to the standard deferred acceptance (DA)
algorithm, and we calculate how many minimum quota seats remain. This process is
then repeated until all students are assigned. Note that both of these mechanisms take
the minimum quotas as an explicit input and use this information together with the
student preferences to allocate the flexible seats (those above the minimum quota), in
stark contrast to artificial caps, which bluntly eliminate a large block of seats without
considering the actual preferences of the students.

We show that both ESDA and MSDA are strategyproof, which ensures that our
predictions of agent behavior are very robust, and the predicted welfare gains from
our mechanisms will actually be realized in equilibrium. With regard to the tradeoff
between fairness and nonwastefulness, we show that ESDA is fair, while MSDA is
nonwasteful. While it is impossible to satisfy both fairness and nonwastefulness simul-
taneously, they are still appealing normative properties to policymakers, and hence it is
desirable to weaken them as little as possible. We analyze this in two ways. First, theo-
retically, we introduce new second-best definitions of fairness and nonwastefulness and
show they are satisfied by our mechanisms. Second, we use simulations to quantify how
far each mechanism is from the first-best concepts of fairness and nonwastefulness.

Finally, we compare our new mechanisms to artificial caps DA (ACDA), which has
been used in several markets, such as the Japan medical residency and military cadet
markets mentioned earlier. ACDA is strategyproof and fair (as is ESDA), but ACDA
is strongly wasteful, while ESDA is weakly nonwasteful. Simulations show that both
ESDA and MSDA waste significantly fewer seats than ACDA and are overwhelmingly
preferred by the students, in the sense that the rank distributions of ESDA and MSDA
first-order stochastically dominate that of ACDA. Thus, from a policy perspective, there
seems to be little theoretical or empirical justification for using ACDA. If fairness is
a larger concern, then ESDA should be used, while if nonwastefulness is paramount,
then MSDA is the better choice.

We close by emphasizing that the main goal of this article is to provide practical mech-
anisms that can easily be implemented in markets with minimum quota constraints.
Any such mechanism must inevitably give up either fairness or nonwastefulness, at
least in its strongest form. This necessitates nonstandard ways of thinking about such
properties, which is an additional contribution of this article. We follow the school
choice literature in taking fairness and nonwastefulness as normative axioms, and so
while one of them must be weakened, we hope to satisfy the weakened axiom as much

then that school must be filled to capacity. Strategyproofness is an incentive constraint that ensures that
truth telling is a dominant strategy; that is, it is not possible for students or parents to “game the system.”
See Section 2 for formal definitions.
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as possible. By showing that our mechanisms satisfy second-best theoretical properties
and using simulations to measure the losses in fairness and nonwastefulness quantita-
tively, we argue that while minimum quotas do lead to some impossibility results, the
mechanisms we introduce still satisfy many desirable properties and should be useful
in practical applications where minimum quotas are an important concern.

Related Literature

While minimum quotas seem like a natural extension to the standard matching models,
there is little work on the topic, most likely because the problem becomes difficult and
many of the results from the previous literature have been negative, starting with the
rural hospital theorem first introduced in Roth [1986]. In the context of school choice,
Kojima [2012] shows that some types of affirmative action quotas may actually hurt the
very minorities they are supposed to help. Hafalir et al. [2013] use minority reserves
(as opposed to majority quotas) to alleviate the problem identified by Kojima [2012],
while Kominers and Sönmez [2012] generalize the mechanism of Hafalir et al. [2013]
to allow for slot-specific priorities. Westkamp [2013] analyzes complex (maximum)
quota constraints in the German university admissions system, while Braun et al.
[2014] conduct an experimental analysis of the same system. The important difference
between our setting and these previous works is that the minimum quotas are hard
constraints that must be satisfied by any matching, while the papers listed previously
either do not model minimum quotas explicitly (instead using a maximum quota for
majority students as a way to implicitly reserve seats for minority students) or treat
the minimum quotas as “soft” constraints that may or may not actually be satisfied at
the final matching.

The paper most related to this one is Ehlers et al. [2014], who study diversity con-
straints in school choice. They show that if the constraints are interpreted as hard
constraints, any mechanism that is fair and satisfies a definition they call constrained
nonwastefulness cannot simultaneously be strategyproof. 5 They provide a trading-
cycles-style mechanism similar in spirit to Erdil and Ergin [2008], but they also show
that this mechanism is manipulable. Because of the difficulties introduced by hard
constraints, they then reinterpret the diversity constraints in their model as soft con-
straints and are able to obtain more positive results. The model of soft constraints found
in Ehlers et al. [2014] can be thought of as a generalization of Hafalir et al. [2013] to
the case where there are more than two types of students; both are formally distinct
from the model in this article, because they allow the minimum quotas to be violated
at the final matching. We consider the case of hard constraints that must be satisfied
for a matching to be feasible and are the first to provide strategyproof mechanisms in
such a setting. We view this as an important contribution, as the matching literature
has found strategyproofness to be a key property in a wide variety of settings.6 Due to

5Alcalde and Romero-Medina [2014] study a similar weakening to the constrained nonwastefulness notion
of Ehlers et al. [2014] in a model without floor constraints. They say a matching is λ-equitable if, whenever a
student objects to it in favor of some other matching based on his or her priority being violated, some other
student will object to this new matching. They then call a matching τ -fair if it is efficient and λ-equitable.
Just as in Ehlers et al. [2014], τ -fairness is incompatible with strategyproofness [Kesten 2010]. We should
also note that the terminology used by Alcalde and Romero-Medina [2014] is different from that used here:
what they call equity is essentially what we call fairness, while they use the word “fair” to mean “equitable
and efficient.”
6See, for example, Roth [1991], Abdulkadiroğlu et al. [2005], Ergin and Sönmez [2006], Chen and Sönmez
[2006], Pathak and Sönmez [2008], and Pathak and Sönmez [2013], who discuss the negative consequences of
manipulable mechanisms. The use of strategyproof mechanisms also advances the so-called Wilson Doctrine
[Wilson 1987], which argues that in order to analyze practical problems, economic models should reduce
their reliance on common knowledge assumptions among the players. In particular, strategyproof mecha-
nisms require no knowledge or beliefs about the preferences of others in order for students to formulate a
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the impossibility result of Ehlers et al. [2014], to achieve strategyproofness, we must
weaken one of nonwastefulness or fairness, and we study this tradeoff extensively in
this article, both theoretically and using simulations. Fragiadakis and Troyan [2014]
consider a model similar to the diversity constraints model of Ehlers et al. [2014] but
provide a different class of mechanisms.

The problem of matching with minimum quotas has also been addressed in the
computer science community. Biró et al. [2010] analyze college admissions in Hungary,
in which colleges may declare minimum quotas for their programs, and study the
difficulty of finding stable matchings when minimum quotas are introduced, but they
do not provide explicit mechanisms or consider incentive or efficiency issues, as we do
here. Hamada et al. [2014] also study matching with minimum quotas in the hospitals-
residents problem, showing that minimizing the number of blocking pairs is an NP-hard
problem when minimum quotas are imposed.

As a final possible application, consider the medical residency market studied first
by Roth [1984]. In these markets, the shortage of doctors in rural areas is a well-known
problem, and the so-called rural hospitals theorem suggests it is difficult to solve [Roth
1986; Martinez et al. 2000; Hatfield and Milgrom 2005]. Kamada and Kojima [2015]
discuss one possible solution used in Japan: capping the number of residents who can
be assigned to a given region. To the extent that these caps are simply an ad hoc way
to ensure some true minimum quotas are satisfied, imposing these quotas directly and
using one of our mechanisms is another possible approach.

The remainder of this articles is organized as follows. In Section 2, we present
a basic model with minimum and maximum quotas and introduce some standard
desiderata. We show how these desiderata become incompatible in the presence of
minimum quotas, and so must be weakened in some way. Section 3 introduces the
ESDA algorithm and discusses its properties, while Section 4 does the same for the
MSDA algorithm. Section 5 uses computer simulations to quantitatively study ESDA,
MSDA, and ACDA with respect to fairness, nonwastefulness, and student welfare.
Section 6 concludes. All proofs are in the appendix, unless otherwise stated.

2. MATCHING WITH MINIMUM QUOTAS

2.1. Model

For convenience, we use the language of matching students and schools, but our model
can be applied to many other types of markets, including those mentioned in the
introduction.

A market consists of (S, C, p, q,�S,�C). S = {s1, s2, . . . , sn} is a set of n students,
C = {c1, c2, . . . , cm} a set of m schools (“colleges”). We use p = (pc1 , . . . , pcm) and q =
(qc1 , . . . , qcm) to denote lists of minimum and maximum quotas, respectively, for each
school, where pc ≥ 0, qc > 0, pc ≤ qc, and n ≥ qc + ∑

c′ �=c pc′ for all c ∈ C and
∑

c∈C pc <

n <
∑

c∈C qc. The last two conditions are consistency conditions that relate the total
number of students to the sizes of the minimum and maximum quotas.7 Define e =
n− ∑

c∈C pc to be the number of excess students above the sum of the minimum quotas.

best response (see also Bergemann and Morris [2005] for a discussion of robustness to beliefs in general
mechanism design settings). It should be noted, however, that while economists have generally advocated
for the replacement of manipulable mechanisms with strategyproof ones, the benefits are not without a cost:
Miralles [2009], Abdulkadiroğlu et al. [2011], Featherstone and Niederle [2011], and Troyan [2012] have
shown that nonstrategyproof mechanisms (the Boston mechanism in particular) may sometimes outperform
strategyproof ones, at least in equilibrium.
7If n >

∑
c∈C qc or n <

∑
c∈C pc, then there would be no way to assign all of the students without violating

some quota. If n = ∑
c∈C pc or

∑
c∈C qc, there is no flexibility in the seats to be assigned and the standard

DA algorithm can be used. Our model only becomes interesting when choices must be made about where to
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To make the problem interesting, we additionally assume that m > 2 and pc < qc for
at least two schools.8

Each student s has a strict preference relation �s over C, while each school c has a
strict priority relation �c over S. Profiles of relations, one for each agent, are denoted
�S = (�s)s∈S for the students and �C = (�c)c∈C for the schools. Let P denote the set of
possible preference relations over C, and P |S| denote the set of all preference profiles for
all students. As is standard in the school choice literature, the school priorities are fixed
and known to all students (in applications, priorities are often related to such things
as the distance a student lives from a school or whether or not a student has a sibling
attending the school). For now, we assume all students are acceptable to all schools and
vice versa. This is a reasonable assumption in many contexts: in public school choice,
school districts are legally required to assign every student a seat at some school, and
school districts often assign students to schools they did not express any preference for
(though they may still of course take their outside options); in military cadet matching,
cadets are obligated to serve in the army, and so must express preferences over every
possible branch.9 This assumption is formally required to guarantee the existence of
a feasible and individually rational matching, though in practice, our mechanisms can
be run without it (see Section 5).

A matching is a mapping μ : S ∪ C → 2S ∪ C that satisfies (1) μ(s) ∈ C for all s ∈ S,
(2) μ(c) ⊆ S for all c ∈ C, and (3) for any s ∈ S and c ∈ C, we have μ(s) = c if and only if
s ∈ μ(c). A matching is feasible if pc ≤ |μ(c)| ≤ qc for all c ∈ C. Let M denote the set of
feasible matchings. A mechanism χ : P |S| → M is a function that takes as an input any
possible preference profile of the students and gives as an output a feasible matching
of students to schools. We write χi(�S) for the assignment of agent i ∈ S ∪ C.10

2.2. Properties

In this section, we discuss several properties that are important both in theory and
for practical market design. All have been key considerations in the redesign of school
choice mechanisms in many cities.

In order to define the first property (fairness), we must introduce the notion of a
blocking pair.

Definition 2.1. Given a matching μ, student–school pair (s, c) is a blocking pair if
c �s μ(s) and s �c s′ for some s′ ∈ μ(c).

In words, student s would rather be matched to school c than his or her current
match μ(s), and he or she has higher priority at c than some student s′ who is currently
assigned there; thus, s has a claim on a seat at c over student s′. In some papers, it
is said that s has justified envy toward s′, and we will sometimes use these terms
interchangeably. Priorities are often based on criteria such as distance between a
student and the school or test scores, and if one student justifiably envies another, he
or she may be able to take legal action against the school district [Abdulkadiroğlu and

assign the flexible seats. If n < qc + ∑
c′ �=c pc′ for some c, then whenever school c was assigned qc students,

there would not be enough students left to fill the minimum quota seats at the other schools.
8These assumptions are likely to be satisfied in any real-world market of reasonable size. The special cases
where these assumptions do not hold are dealt with in Appendix E.
9See the appendix for a more detailed discussion of markets where the assumption of complete preference
listings is satisfied.
10Since student preferences are the only private information, we only explicitly write this as a function of
�S; however, this function of course implicitly depends on C, p, q, and �C as well.
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Sönmez 2003]. Thus, an important goal of many school districts is for a matching to
contain no such blocking pairs. When this is true, we say that the matching is fair.11

Definition 2.2. A matching μ is fair (or eliminates all justified envy) if no student–
school pair (s, c) can form a blocking pair.

The next important property is nonwastefulness. Say that student s claims an
empty seat at school c if c �s μ(s) and |μ(c)| < qc.

Definition 2.3. A matching μ is nonwasteful if, whenever a student s claims an
empty seat at school c, we have |μ(μ(s))| = pμ(s).

Put another way, this definition says that if student s prefers school c to his or her
assignment μ(s), school c has an empty seat, and school μ(s) has strictly more students
than its minimum quota, then s should be moved to c.12

These properties also have counterparts for mechanisms: we say χ is fair (nonwaste-
ful) if for every preference profile it produces a fair (nonwasteful) matching. The last
important properties concern incentives for the students to report truthfully.

Definition 2.4. A mechanism χ is strategyproof if χs(�S) �s χs(�′
s,�S\{s}) for all

�S ∈ P |S|, s ∈ S, and �′
s∈ P.

In words, a mechanism is strategyproof if no student ever has any incentive to
misreport his or her preferences, no matter what the other students report. As discussed
in the introduction, strategyproofness has been found to be a very important property
in the success of matching mechanisms, for both positive and normative reasons. All of
the mechanisms we provide will be strategyproof. In addition, our mechanisms will be
immune to certain types of group manipulations.

Definition 2.5. A mechanism χ is group strategyproof if there does not exist
a preference profile �S ∈ P |S|, a group of students S′ ⊆ S, and a preference profile
(�′

s)s∈S′ ≡�′
S′ such that χs(�′

S′,�S\S′ ) �s χs(�S) for all s ∈ S′.

That is, there is no subset of students who can jointly misreport their preferences
and make every member of the set strictly better off. Clearly, group strategyproofness
implies strategyproofness. It is well known that without minimum quotas, DA is group
strategyproof [Hatfield and Kojima 2009]. Both of our new mechanisms will also be
group strategyproof.

2.3. Impossibility of a Simultaneously Fair and Nonwasteful Matching

In the standard school choice model with only maximum quotas, it is always possible to
find matchings that are simultaneously fair and nonwasteful. However, in the presence

11For example, fairness was an important criterion to administrators of the Boston school district when they
were redesigning their school assignment mechanism. See Abdulkadiroğlu et al. [2005].
12Starting with Gale and Shapley [1962], most of the literature combines fairness and nonwastefulness
into a single definition called stability, which is then given a positive interpretation (i.e., if a matching is
unstable, agents can jointly deviate to circumvent the match and obtain a more preferred assignment).
In many recent applications, organizers may actually have the power to prevent such blocking pairs from
forming, such as cities that control all school seats in a district and can prevent a student from enrolling
in a school other than his or her assigned one. While technically feasible, implementing an allocation that
ignores preferences and priorities still seems very undesirable and justifies fairness and nonwastefulness
as important normative axioms. See, for example, Balinski and Sönmez [1999], Abdulkadiroğlu and Sönmez
[2003], and Abdulkadiroğlu et al. [2005]. This also applies to other markets such as military cadet matching,
where the army has the power to assign cadets to any branch, but it is a rooted institutional feature that
cadets who rank higher on the Order of Merit List deserve their more preferred assignments.
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6:8 D. Fragiadakis et al.

of minimum quotas, such matchings may not exist. This is shown in the following
example, which is instructive in illustrating the main problem that arises.13

Let there be two students s1 and s2 and three schools c1, c2, and c3. The student
preferences and school priorities and quotas are given in the following table. Note that
each school has one seat, and school c1 has a minimum quota of 1. All other minimum
quotas are 0.

�c1 �c2 �c3

s2 s2 s1

s1 s1 s2

pc 1 0 0
qc 1 1 1

�s1 �s2

c2 c3

c3 c2

c1 c1

The minimum quota requirement at c1 means that one of s1 or s2 must be assigned
there; nonwastefulness then requires that the other student be assigned his or her
most preferred school. However, the student assigned c1 will then justifiably envy the
other student. For example, in the allocation indicated by the boxes, s1 prefers c3 and
has higher priority than s2 there, and thus forms a blocking pair. The case where s2
is assigned c1 is similar. Because of this impossibility, one of these properties must be
weakened if we are to satisfy the minimum quotas.

2.4. Artificial Caps Deferred Acceptance (ACDA)

Without minimum quotas, the well-known DA algorithm of Gale and Shapley [1962]
is fair, nonwasteful, and strategyproof. However, DA may not satisfy the minimum
quotas. Because of this, many markets opt to use the very simple solution of running
deferred acceptance under artificially lower maximum quotas (“artificial caps”). By
imposing sufficiently stringent artificial caps, it is possible to ensure that no matter
how the students are allocated, the minimum quotas will be satisfied.14

As an example, consider a market of n = 100 students and m = 10 schools, each with
pc = 5 and qc = 20. Now, imagine imposing artificial caps of q∗

c = 10 at each school and
running the standard DA algorithm. By doing so, exactly 10 students will be assigned
to each school, thereby satisfying all minimum and maximum quotas. However, this
may be very wasteful if, for example, the first choice of every student is c1, because
many students could be moved to c1 and made better off without violating any quotas.
The problem is that the mechanism has no flexibility and eliminates seats without
regard to student preferences. (Note also that to an outside observer it would appear
that each school had only 10 seats with no minimum quotas. In reality, this is not
the case, and only appears so because the school district has no good way of handling
minimum quotas.)

Definition 2.6. Let q∗ = (q∗
c1

, . . . , q∗
cm

) be a list of artificial capacities (that need not
be equal to the true capacities q). Artificial capacities q∗ ensure a feasible matching
if |μ(c)| ≤ q∗

c ∀c ∈ Cpc ≤ |μ(c)| ≤ qc ∀c ∈ C.

In words, this definition says that whenever matching μ explicitly satisfies the ar-
tificial caps q∗, it also implicitly satisfies the true minimum and maximum quotas p
and q. In general, there will be many choices q∗ that ensure a feasible matching, and
at least one such choice always exists: pick a feasible μ and set q∗

c = |μ(c)|.

13This example was first noted in Ehlers et al. [2014].
14The deferred acceptance algorithm is well known in the literature, and it is also a special case of the new
mechanisms we define in Section 3, and so we do not give its definition here. See Gale and Shapley [1962]
for the original description, or Abdulkadiroğlu and Sönmez [2003] for a discussion of DA in the context of
school choice.
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The ACDA is defined as the standard DA algorithm under some artificial caps q∗ that
ensure a feasible matching. ACDA is a popular approach because it inherits two of the
good properties of DA, strategyproofness and fairness, while also satisfying feasibility
and being very simple to implement. The drawback of ACDA is that it will waste seats.

THEOREM 2.7. Let q∗ be a choice of artificial capacities that ensures a feasible matching.
Artificial caps deferred acceptance under q∗ is group strategyproof and fair and produces
a feasible matching for any profile of submitted preferences; however, ACDA is wasteful.

Feasibility follows by definition of q∗, while strategyproofness and fairness follow from
the fact that the DA mechanism itself is strategyproof and fair. To see that ACDA may
be wasteful, consider the example in Section 2.3, and impose an artificial cap of 0 at c2
(the other capacities are unchanged). Then, consider the following preferences of the
students:

�s1 �s2

c2 c1

c3 c2

c1 c3

ACDA gives the allocation shown in the boxes, which is wasteful because s1 claims
an empty seat at c2. The problem is that ACDA eliminates the seat at c2 ex ante (before
preferences are submitted) to ensure that when running standard DA, at least one
student will be assigned to c1 for any possible preference profile. The new mechanisms
that we introduce will correct this by allowing the extra seats to be assigned more
flexibly, based on the submitted student preferences.

3. EXTENDED-SEAT DA (ESDA)

3.1. Definition of ESDA

To define our first new algorithm, we take the original market (S, C, p, q,�S,�C)
and define a corresponding “extended market”: (S, C̃, q̃, �̃S, �̃C̃). When extending the
market, the set of students is unchanged. For the schools, we divide each school c
into two smaller schools: a standard school, which, with slight abuse of notation, we
label c, and that has a maximum quota of q̃c = pc, and an extended school c∗, which
has a maximum quota of q̃c∗ = qc − pc. Each school (standard and extended) uses
the original priority relation of school c: �̃c = �̃c∗ =�c. Thus, the set of schools is
now C̃ = C ∪ C∗ = {c1, . . . , cm, c∗

1, . . . , c∗
m} and the maximum quotas are q̃ = {q̃c′ }c′∈C̃ .

Note that the extended market has no minimum quotas. By assigning no more than
e = n − ∑

c∈C pc students to extended schools, all standard schools will be filled to
capacity, thereby satisfying all minimum quotas in the original market.15

For the students, preferences over C ∪ C∗ are created by taking the original prefer-
ence relation �s and inserting school c∗

j immediately after school c j . That is,

preference relation �s: c j �s ck · · · becomes �̃s : c j �̃s c∗
j �̃s ck �̃s c∗

k · · ·

15In a problem with affirmative action for minority students, Hafalir et al. [2013] use a similar strategy of
creating a new market by creating for each school c a “fictitious” school c′ that favors minority students and
analogously augmenting the student preferences over the original and fictitious schools. Their problem and
resulting algorithm is formally distinct from ours, with the main difference being that the lower bounds in
their model are only “soft” constraints, and so may or may not be satisfied at the final matching (see the
introduction). This allows them to immediately apply the standard deferred acceptance algorithm directly to
their augmented market. In our model, the minimum quotas are hard constraints, and so we must alter the
deferred acceptance algorithm so that no more than e students are assigned to the extended schools, which
ensures that at the end of our algorithm, the minimum quotas will always be satisfied.
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6:10 D. Fragiadakis et al.

The main issue that arises is how to assign the extended seats when more than e
students have applied to them. To do so, we fix an ordering of the schools and let the
schools accept students one by one in this order until e students have been accepted
across all of the extended schools. The remaining students who have applied to the
extended schools are rejected.
Extended-seat deferred acceptance
Fix(q̄c∗ )c∗∈C∗ such that q̄c∗ ≤ q̃c∗ and

∑
c∗∈C∗ q̄c∗ ≤ e, and fix an ordering of the ex-

tended schools, which, for notational convenience, we denote {c∗
1, c∗

2, . . . , c∗
m}. Let μ̃ be

the matching produced in the extended market.

(1) Begin with an empty matching such that μ̃(s) = ∅ for all s ∈ S.
(2) Choose a student s who is not currently tentatively matched to any school. If no

such student exists, end the algorithm.
(3) Let s apply to the most preferred school c̃ ∈ C̃ according to �̃s that has not yet

rejected him or her. If c̃ is a regular school, let school c̃ choose up to the q̃c̃ highest-
ranked students according to �̃c̃ among those students who thus far have applied
to c̃ but have not yet been rejected by c̃. School c̃ rejects any remaining students,
and the algorithm returns to step 2. If c̃ is an extended school, proceed to step 4.

(4) In this step, we consider all extended schools. For each extended school c∗ ∈ C∗,
let Sc∗ be the set of students tentatively held at c∗ (i.e., those students who have
applied to c∗ but have not yet been rejected, including the student who applied in
step 3). Let each school c∗ ∈ C∗ choose up to the q̄c∗ highest-ranked students in
Sc∗ according to �̃c∗ ; denote this set S′

c∗ . Starting with a tentative match of S′
c∗ for

each school, let the schools choose, one by one, the best remaining student in its
current applicant pool (i.e., those students in Sc∗ that have not yet been chosen)
unless either a school’s true capacity q̃c∗ is reached or the total number of students
assigned to extended schools reaches the cap e. Formally, set j = 1 and:
(a) If either (i) the number of students assigned to extended seats across all ex-

tended schools is equal to e, or (ii) for each extended school c∗ ∈ C∗, the number
of students chosen so far throughout step 4 is equal to min{q̃c∗ , |Sc∗ |}, then reject
all remaining students not chosen by any extended school and return to step 2.

(b) If not, let c∗
j choose its most preferred student in Sc∗

j
who has not yet been

chosen, as long as the number of students chosen so far is strictly less than q̃c∗ .
If j < m, increment j by 1. If j = m, set j = 1. Return to step 4(a).

The previous algorithm outputs a matching in the extended market μ̃. We then take
this outcome and map it to an outcome in the original market in the obvious way: if
μ̃(s) = c or μ̃(s) = c∗, then μ(s) = c, and the final output of the ESDA algorithm is the
matching μ.16

3.2. An Example of ESDA

We next present an example to show how the ESDA mechanism runs.
Example 1. There are five students s1, . . . , s5 and three schools c1, c2, c3. The preferences,
priorities, and minimum and maximum quotas are shown in the following table:

16In the running of the mechanism, a choice must be made about how to set q̄c∗ for each c∗, which captures
the number of students each c can accept before the round-robin picking procedure begins. This choice must
be made so as to ensure that afterward, there are enough students remaining to satisfy the minimum quotas
at all schools. One natural choice is q̄c∗ = 0 for all c∗ ∈ C∗, which corresponds to a situation in which each
school is first allowed to accept a number of students equal to its minimum quota, and then schools continue
to choose students one by one. However, nonsymmetric choices may also be used if we expect some schools
to be more popular than others ex ante.
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�c1 �c2 �c3

s5 s3 s3

s3 s4 s4

s1 s1 s2

s2 s2 s5

s4 s5 s1

p 1 1 1
q 2 3 1

�s1 �s2 �s3 �s4 �s5

c2 c2 c1 c2 c1

c1 c1 c2 c3 c2

c3 c3 c3 c1 c3

To run ESDA, our extended market uses schools C ∪ C∗ = {c1, c2, c3, c∗
1, c∗

2, c∗
3}. The

maximum quotas are q̃c1 = q̃c2 = q̃c3 = 1, and q̃c∗
1

= 1, q̃c∗
2

= 2 and q̃c∗
3

= 0. Note that
there are no minimum quotas in the extended market. Recall that the ordering of the
schools is c1 > c2 > c3. The cap on the number of extended seats is e = 2. Set q̄c∗ = 0
for all c∗ ∈ C∗.

We additionally modify all students’ preferences by inserting school c∗
j after school

c j . For example, the modified preferences of student s1 are as follows:

�̃s1 : c2 �̃s1 c∗
2 �̃s1 c1 �̃s1 c∗

1 �̃s1 c3 �̃s1 c∗
3.

This leads to the following extended market, where the changes are shown in red:

�̃c1 �̃c∗
1

�̃c2 �̃c∗
2

�̃c3 �̃c∗
3

s5 s5 s3 s3 s3 s3

s3 s3 s4 s4 s4 s4

s1 s1 s1 s1 s2 s2

s2 s2 s2 s2 s5 s5

s4 s4 s5 s5 s1 s1

q 1 1 1 2 1 0

�̃s1 �̃s2 �̃s3 �̃s4 �̃s5

c2 c2 c1 c2 c1

c∗
2 c∗

2 c∗
1 c∗

2 c∗
1

c1 c1 c2 c3 c2

c∗
1 c∗

1 c∗
2 c∗

3 c∗
2

c3 c3 c3 c1 c3

c∗
3 c∗

3 c∗
3 c∗

1 c∗
3

ESDA begins with s1, s2, and s4 applying to school c2 and students s3 and s5 applying
to school c1. Schools c1 and c2 tentatively accept s5 and s4, respectively. Everyone else
is rejected.

Students s1 and s2 then apply to c∗
2, and s3 applies to c∗

1. The extended schools then
admit students from their applicant pools one by one. First, c∗

1 admits its only applicant
s3, and then c∗

2 admits student s1 (since s1 �̃c∗
2
s2). At this point, two students have been

admitted to extended schools, and so school c∗
2 must reject the student it was tentatively

holding, s2.
Student s2 continues by applying to c1 but is rejected in favor of s5, who is currently

sitting at c1. He or she then applies to c∗
1. We again allow the extended schools to admit

students from their applicant pools one by one. This begins by c∗
1 accepting s3 (from its

current applicant pool of {s2, s3}). We then move to school c∗
2, which again admits s1.

Once again, at this point two students have been admitted to extended schools, and so
s2, who is tentatively sitting at c∗

1, is rejected. He or she then proceeds to apply to c3
and is admitted, and the algorithm ends. The output in the extended market is

μ̃ =
(

c1 c∗
1 c2 c∗

2 c3 c∗
3

s5 s3 s4 s1 s2 ∅
)

.

Mapping this back to a matching in the original market, the final matching is

μ =
(

c1 c2 c3
{s3, s5} {s1, s4} s2

)
.
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3.3. Properties of ESDA

We now discuss the theoretical properties of the ESDA algorithm.17

THEOREM 3.1. The ESDA mechanism is
(i) group strategyproof
(ii) fair.

We show strategyproofness by first showing that no student can gain by misreporting
his or her preferences in the extended market. Since this is a larger set of possible
manipulations than in the original market, this means that no student can gain by
misrepresenting his or her preferences in the original market either. At a formal level,
the proof in the appendix relates our model to that of Kamada and Kojima [2015] and
the matching with contracts model of Hatfield and Milgrom [2005]. Effectively, we can
think of all of the extended seats as being controlled by one single “umbrella” school,
which has a capacity of e. A contract in the Hatfield-Milgrom terminology then specifies
a student and the specific extended school to which he or she is assigned, and these
contracts are chosen according to the choice function of the umbrella school, which is
determined by the choice of q̄c∗ and the ordering of the extended schools. Hatfield and
Milgrom [2005] show that if the choice functions of all schools satisfy a key substitutes
condition (as well as a condition they call the law of aggregate demand), then the DA
algorithm in the matching with contracts model is strategyproof, while Hatfield and
Kojima [2009] show that it is in addition group strategyproof (see also Hatfield and
Kominers [2012], who obtain the same result in a more general model). The standard
schools obviously have substitutable choice functions, and so the fact that the umbrella
school controlling all of the extended seat contracts also has a substitutable choice
function means that the mechanism is group strategyproof.18

For fairness, note that if a student s is rejected from a regular school, it must be
because that school is filled to its capacity with higher-ranked students. Since the
ranking of students assigned to a school only improves as the algorithm continues, at
the end of the algorithm, s must be lower ranked than every student assigned to this
school, and hence cannot form a blocking pair with any of these students. If, on the
other hand, s is rejected from an extended school, it must be because either (1) that
extended school is filled to capacity with higher-ranked students, in which case s cannot
form a blocking pair for the same reason given previously, or (2) e other students are
tentatively assigned to extended schools. For case (2), when the eth student is accepted,
the school from which student s is rejected is tentatively holding some (possibly empty)
set of students who are higher ranked than s. Because of the fixed order in which
extended schools are allowed to accept new students, no student ranked lower than
any of the students currently held at this school will ever be admitted, and so s cannot
form a blocking pair.

Because ESDA is fair, the impossibility result of Section 2.3 implies that it cannot be
fully nonwasteful. However, there is still an intuitive sense in which ESDA is an im-
provement on ACDA, as it assigns the extended seats more flexibly, using information

17In a short extended abstract appearing in the Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems [Ueda et al. 2012], we discuss an alternative extended-seat DA
algorithm. Though the terminology is the same, the two algorithms run entirely differently and satisfy
different properties.
18Technically, a condition called irrelevance of rejected contracts [Aygün and Sönmez 2013] or path indepen-
dence [Fleiner 2003] is necessary for this to hold. Aygün and Sönmez [2013] show that substitutability and
the law of aggregate demand are sufficient this condition. The choice functions in our model satisfy both
substitutability and the law of aggregate demand, and so strategyproofness follows. See the full proof in the
appendix for further details.
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contained in the submitted preferences. To see this, consider again the example from
Section 2.4 where ACDA produced the outcome in the boxes:

�s1 �s2

c2 c1

c3 c2

c1 c3

Note that s1 would prefer a seat at c2. ESDA does indeed assign s1 to c2 and s2 to c1,
thus making s1 strictly better off without harming s2.

In practice, if the school district had implemented the ACDA allocation, it may then
get a request from student s1 to be moved to c2 and can grant this request without any
objection from student s2, who is already being assigned his or her favorite school. In
a larger market, it is easy to construct matchings at which, if a school district grants
a request for one student to move, a second student then requests the seat vacated
by the first, a third student requests the seat vacated by the second, and so forth.
Such a chain can end in one of two ways: (1) all such requests are granted without
violating any minimum quotas or (2) eventually the school district receives a request
that must be denied because otherwise the minimum quota would be violated. In case
(2), since the school district cannot grant all requests while still ensuring feasibility, it
may instead opt for a policy of not granting any student requests for an empty seat, as
this will lead to an avalanche of other requests, not all of which can be granted.

The following definitions formalize these ideas. Say student s weakly claims a seat
at school c if there exists a chain of students and schools (c0, s1, c1, s2, . . . , cJ−1, sJ),
J ≥ 1, such that (1) |μ(c0)| < qc0 , (2) c j−1 �s j c j , (3) μ(s j) = c j , and (4) cJ−1 = c and
sJ = s. When J = 1, weakly claiming a seat is equivalent to claiming an empty seat.

Definition 3.2. Given a matching μ, let Z(μ) be the set of students who weakly claim
a seat at some school. If |μ(μ(s))| > pμ(s) for all s ∈ Z(μ), then matching μ is strongly
wasteful. If matching μ is not strongly wasteful, we say it is weakly nonwasteful.

Mechanism χ is weakly nonwasteful if it produces a weakly nonwasteful matching
for every possible preference profile. Otherwise, χ is strongly wasteful.

THEOREM 3.3.
(i) ACDA is strongly wasteful.
(ii) ESDA is weakly nonwasteful.

Consider again the example in Section 2.4. The allocation produced by ACDA is strongly
wasteful because it is possible to grant student s1’s request to move without denying the
request of student s2, who is already being assigned his or her favorite school (formally,
Z(μ) = {s1} and |μ(c3)| > pc3 ); this does not happen under ESDA, where student s1 is
assigned to c2 (so Z(μ) = ∅). Theorem 3.3 formalizes the intuition that ESDA is less
wasteful than ACDA. In Section 5, we also study this question with simulations and
find that quantitatively, ESDA wastes far fewer seats than ACDA and is preferred by
the students. These results suggest that markets using ACDA would be better served
switching to ESDA, since ESDA satisfies the same fairness and incentive properties as
ACDA while wasting fewer seats and increasing student welfare.

4. MULTISTAGE DA (MSDA)

4.1. Precedence Lists

The ESDA algorithm introduced in the last section satisfies the desirable properties
of strategyproofness and fairness, and while it satisfies a stronger nonwastefulness
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property than artificial caps DA, ESDA will still result in some wasted seats. If non-
wastefulness is a bigger concern to policymakers than fairness, then ESDA may not
be a desirable mechanism to use. In this section, we define an alternative mechanism,
called MSDA, which will be strategyproof and nonwasteful, though it will satisfy only
a weaker definition of fairness.

Since we do not want to give up fairness entirely, we must introduce a new way
to think about the concept. The problem is that any mechanism that is strategyproof
and nonwasteful tends to produce too many blocking pairs according to the standard
definition. Therefore, our new notion of fairness must declare some of these potential
blocking pairs as invalid.

To see the crux of the problem, consider again the example from the impossibility
result:

�c1 �c2 �c3

s2 s2 s1

s1 s1 s2

pc 1 0 0
qc 1 1 1

�s1 �s2

c2© c3

c3 c2

c1 c1©

The boxed and circled matchings are the only two that are both feasible and non-
wasteful. In the boxed matching, s1 forms a blocking pair with school c3. In the circled
matching, on the other hand, s2 forms a blocking pair with c1. However, the school
district must somehow choose which student will be assigned to the undesirable school
c1 (i.e., must choose between the boxed and circled matchings) and then not allow this
student to form a blocking pair. If the school district chooses the boxed matching, it is
effectively giving precedence to student s2 at a district-wide level; that is, the district
is prioritizing s2 � s1, while if it chooses the circled matching, it is giving precedence to
s1, that is, prioritizing s1 � s2.

To formalize this idea, we introduce a district-wide precedence list �PL that ranks
all students. Without loss of generality, we let s1 �PL s2 �PL · · · �PL sn. Note that the
precedence list does not correspond to any individual school. We then say that (s, c)
form a PL-blocking pair if the following conditions are met for some s′ ∈ μ(c):

(i) c �s μ(s)
(ii) s �c s′ and s �PL s′.

Using this definition, we can then define an analogous notion of fairness that elimi-
nates all PL-blocking pairs.

Definition 4.1. A matching μ is PL-fair if no student–school pair (s, c) can form a
PL-blocking pair. A mechanism χ is PL-fair if χ (�S) is a PL-fair matching for every
preference profile �S.

Note that this is very similar to the standard definitions of blocking pairs and fair-
ness, with the additional requirement that s’s envy toward s′ is only justified if he or
she is ranked higher than s′ on both the school-specific �c and the district-wide �PL.
In the previous example, if s1 �PL s2, then the circled matching is PL-fair, since s2 will
no longer have justified envy toward s1.

How to choose the precedence list will depend on the details of the setting, but in
many cases, there are natural candidates. For example, the military has an Order of
Merit List that ranks all cadets based on academic performance, physical fitness, and
military performance. In many countries with centralized college admissions, students
take a common entrance exam, which is a natural candidate for �PL [Abizada and Chen
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2014].19 In the Kyushu University problem of matching students to laboratories men-
tioned in the introduction, a listing of students based on grade point average is used.

In some cases, random numbers may also be used to form the district-wide precedence
list. For example, in Boston, all families are assigned a random number (which can be
thought of as �PL), and 50% of seats at each school are reserved for students with walk
zone priority at the individual school, while the other 50% are assigned according to
�PL [Dur et al. 2013]. Thus, a student can effectively only justifiably envy another at
a school c if he or she has higher walk-zone priority (is higher on �c) and a higher
random number (is higher on �PL).20

The definition here is consistent with the normative interpretation of school priorities
discussed in Section 2: all else equal, the school district desires to rely on the school
priority lists as much as possible (perhaps due to political constraints) and only use
�PL when necessary.21 The goal of the MSDA mechanism defined later is to strike a
similar balance, by relying on the school priority lists as much as possible and only
deviating when necessary to satisfy the quotas.

4.2. Definition of MSDA

With the precedence list in hand, we can now describe our second mechanism, the
multistage deferred acceptance algorithm (MSDA). As the name suggests, MSDA
is run in several stages. At the beginning of any stage, we temporarily reserve a group
of students from the market and run standard DA on the remaining submarket. The
number of students participating in the submarket is never too many to jeopardize
the feasibility of the overall match; no matter how they are allocated, the sum of the
minimum quotas remaining after the given stage will never exceed the number of
students that remain unmatched after that stage. The assignments from the given
stage are made final, and we reduce the minimum and maximum quotas accordingly.
Now, we are left with a subproblem of unmatched students and updated minimum and
maximum quotas. We repeat the process until all students are assigned. To determine
what students will be reserved, we must use �PL.

To formally define MSDA, we return to the original market (S, C, p, q,�S,�C). Recall
that without loss of generality, the precedence list ranks students s1 �PL s2 �PL · · · �PL
sn. Start by setting R0 = S, p1

c = pc, and q1
c = qc for all c ∈ C. Let r1 = ∑

c∈C p1
c be the

number of students that will be reserved in R1.

Multistage deferred acceptance

Stage. k ≥ 1

(1) Set Rk = {sn−rk+1, sn−rk+2, . . . , sn}; that is, Rk is the set of rk students with the lowest
priority according to �PL.
(a) If Rk−1 \ Rk �= ∅, run the standard DA mechanism on the students in Rk−1 \ Rk

with maximum quotas for the schools equal to (qk
c )c∈C .

19See also Perach et al. [2007] and Perach and Rothblum [2010] for the use of precedence lists in problems
of allocating university housing.
20An alternative (and equivalent) way to say this is that a student s’s envy of the assignment of another
student s′ can be denied on the basis of s′ �c s (s′ has higher walk-zone priority than s) or s′ �PL s (s′ has a
higher random number than s).
21The description of the priority system in Boston in the previous paragraph is also consistent with a nor-
mative viewpoint, as the school district views its approach as a desirable middle ground between completely
neighborhood-based school assignment and equal access to all seats for everyone.
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(b) If Rk−1 \ Rk = ∅, run the standard DA mechanism on the students in Rk with
maximum quotas for the schools equal to (pk

c )c∈C .22

(2) Let μk be the matching from step k− 1, and remove all students assigned from the
market. If all students have been tentatively assigned a school, end the algorithm.
If not, proceed to step 3.

(3) Define new quotas for each school:
(a) qk+1

c = qk
c − |μk(c)|,

(b) pk+1
c = max{0, pk

c − |μk(c)|}.
(c) rk+1 = ∑

c∈C pk+1
c .

(4) Move to stage k + 1.

Once the algorithm is completed (say, after stage K), we are left with a set of stage-
specific matchings μ1, . . . , μK. The final matching output by the algorithm is the match-
ing μ defined by μ(c) = ∪K

k=1μ
k(c) for all c ∈ C and μ(s) = μk(s)(s) for all s ∈ S, where

k(s) is the stage at which student s participated.

4.3. An Example of MSDA

We now provide an example of how MSDA works.

Example 2. We use the same instance of Example 1 to illustrate how MSDA works.
Since the sum of the minimum quotas is

∑
c∈C pc = 3, we temporarily remove students

s3, s4, and s5 according to �PL. We then run the standard DA mechanism with no
minimum quotas on students s1 and s2. At the end of this first stage, the assignments
are as follows: (

c1 c2 c3
∅ {s1, s2} ∅

)
.

Thus, there are three students remaining, and neither c1 nor c3 have reached his or
her minimum quotas. We temporarily remove s4 and s5 and run DA on s3 alone. At the
end of this stage, the assignments are as follows:(

c1 c2 c3
s3 {s1, s2} ∅

)
.

Now, only c3 has not reached its minimum quota, so we reserve s5 and run DA on
s4 alone, who chooses to attend c2. Finally, the only student remaining is s5, and the
minimum quota of 1 at c3 still needs to be filled, so s5 is assigned c3. The final outcome
is then (

c1 c2 c3
s3 {s1, s2, s4} s5

)
.

In the previous, we determine the number of students who must be removed in
each round as the sum of the minimum quotas (step 3(c) of the algorithm). We may,
however, be able to remove even fewer students and still ensure feasibility. For exam-
ple, assume there are 15 students and 10 schools, with all minimum quotas equal to 1

22Most rounds will use step 1(a), except for (possibly) the last round of the algorithm. Step 1(b) ensures that
the algorithm finishes. In 1(a), if, once we remove enough students to satisfy the minimum quotas, there
are still students left (Rk−1 \ Rk �= ∅), we run the standard DA mechanism on those students who were not
removed. However, if it happens at any stage that the number of students remaining is exactly equal to the
minimum quotas, then “removing” these students would leave us with an empty set and the algorithm would
run indefinitely. This explains step 1(b). Also note that the first time step 1(b) is executed will be the last
round of the algorithm.
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and all maximum quotas equal to 2. Then, we actually need only to remove four stu-
dents, not 10, because no matter how the first 11 students are allocated, the minimum
quotas of at least six schools must be satisfied, and the remaining four students can
fill the minimum quotas of the other four schools. We have thus developed a dynamic
programming-based method to precisely calculate the smallest possible value for rk.
This allows as many students as possible to participate in any given stage k, which
makes MSDA close to standard DA (in the extreme case in which all students are
allowed to participate in stage 1, MSDA = DA). This procedure is described in Ap-
pendix C. The MSDA algorithm using this procedure is exactly the same as described
earlier, except that step 3(c) is replaced with the optimized value of rk. We use this
method of calculating rk when running the simulations in Section 5.

4.4. Properties of MSDA

We next turn to a discussion of the theoretical properties of MSDA. Theorem 4.2 shows
that MSDA is group strategyproof and nonwasteful. Since MSDA is nonwasteful, the
impossibility result of Section 2.3 immediately implies that it will not be fair. However,
it will be PL-fair.23

THEOREM 4.2. The MSDA mechanism is
(i) group strategyproof,
(ii) nonwasteful, and
(iii) PL-fair.

Strategyproofness follows because within each stage the standard DA algorithm is
strategyproof, and, fixing the preferences of the other students, no student s can affect
the stage at which he or she participates in the algorithm. Nonwastefulness holds
because the only time a student would be unable to get into a school with empty seats
is the last round of the algorithm, in which case he or she is assigned to a school that
will be filled exactly to its minimum quota and thus cannot be feasibly moved. For
PL-fairness, note that if a student s is rejected from a school c, then school c was filled
in the round s participates with students ranked higher than s according to �c, and all
students assigned to c in earlier rounds were ranked higher than s according to �PL,
and so s cannot form a PL-blocking pair with c.

While nonwasteful and fair matchings may not exist, nonwasteful and PL-fair match-
ings always exist (since MSDA finds them). PL-fairness is a weaker concept in that it
limits the number of blocking pairs students are allowed to form, but it is the price
of nonwastefulness. We attempt to quantify this price in two ways: theoretically and
with computer simulations. First, in Section 5, we use simulations to count the num-
ber of standard blocking pairs (in the sense of Definition 2.1) the MSDA mechanism
will produce. Second, we ask theoretically whether we can improve upon PL-fairness
while still retaining strategyproofness and nonwastefulness. In Appendix B, we formal-
ize a notion that allows us to rank mechanisms according to fairness by quantifying
how many (standard) blocking pairs the school district must declare as illegitimate.
The concept, which we call σ -fairness, is a generalization of the standard definition
of fairness from Section 2 and the current definition of PL-fairness. Both are special
cases, with PL-fairness being the least fair and the standard definition being the most
fair. While we know from the impossibility that a nonwasteful mechanism will not
be able to reach the highest level of σ -fairness, the question is whether it is possible
for a nonwasteful mechanism to achieve some intermediate level of σ -fairness above

23This can be seen in the previous example, as s5 has justified envy toward s3, since he or she would prefer
to attend c1 and s5 �c1 s3. Note, however, that s3 �PL s5, and so this matching is PL-fair.
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PL-fairness. We show in the appendix that this is unfortunately not the case: any non-
wasteful mechanism is at most PL-fair (strategyproofness is not used in the proof).
Thus, in this sense, MSDA is optimally fair in the class of nonwasteful mechanisms.

4.5. Relationship to the Serial Dictatorship

A popular mechanism in many assignment markets without school-specific priorities
or minimum quotas is the serial dictatorship. Essentially, the serial dictatorship
fixes an ordering of the students (e.g., �PL) and lets the students choose, one by one in
this order, their most preferred school that has seats remaining. In the standard model
with no priorities or minimum quotas, the serial dictatorship is strategyproof and
nonwasteful (fairness is not an issue when there are no school-specific priorities). When
school priorities do exist, it is often argued that the serial dictatorship is a poor choice of
mechanism because it completely ignores the school priorities, and hence is extremely
unfair, as it will produce a large number of students with justified envy. However, as we
have seen, when minimum quotas are present, to achieve nonwastefulness, we must
give up on fairness, at least in its strongest form. The question arises, then, of how a
serial-dictatorship-type mechanism will perform in a market with school priorities and
minimum quotas.

First, we provide a formal definition of the serial dictatorship, modified to accommo-
date the minimum quotas.24

Serial dictatorship with minimum quotas (SD)
Fix an ordering of the students �PL (without loss of generality, we assume s1 �PL
s2 �PL · · · �PL sn). Let μ0 be an empty matching, p1

c = pc, q1
c = qc, and r1 = ∑

c∈C p1
c .

Proceed to Stage 1.

Stage k.

(1) If n− k ≥ rk, that is, the number of students still unassigned (excluding student sk)
is greater than or equal to rk (i.e., the total number of minimum quotas that are
not filled yet), then for student sk, choose his or her most preferred school c where
qk

c > 0.
(2) If not, for student sk, choose his or her most preferred school c where pk

c > 0.
(3) Obtain μk by adding (sk, c) to μk−1. If n = k, return μk as the final matching and end

the mechanism. Otherwise, let pk+1
c = max(0, pk

c − 1), qk+1
c = qk

c − 1, and for c′ �= c,
let pk+1

c′ = pk
c′ , qk+1

c′ = qk
c′ . Let rk+1 = ∑

c∈C pk+1
c . Proceed to Stage k + 1.

Intuitively, the serial dictatorship with minimum quotas works exactly like the stan-
dard serial dictatorship, assigning students one at a time to their most preferred schools
with seats remaining, up until the point at which there are exactly the same number
of students remaining as there are minimum quota seats left to be filled. At this point,
the mechanism departs from the standard serial dictatorship, by restricting the set of
schools that the remaining students can choose from to be only those that have not
yet reached their minimum quotas; otherwise, the feasibility constraints will not be
satisfied.

24The serial dictatorship is a simple mechanism implemented in myriad settings, both formal and informal,
in which a group of objects needs to be allocated to a group of agents without the use of money. For a formal
analysis of the standard serial dictatorship (without minimum quotas), see Abdulkadiroğlu and Sönmez
[1998]. To our knowledge, we are the first to formally analyze this extension of the serial dictatorship to the
case of minimum quotas. For an analysis of a different type of minimum quota serial dictatorship that allows
for school closures, see Monte and Tumennasan [2013].
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THEOREM 4.3. The serial dictatorship with minimum quotas is
(i) group strategyproof,
(ii) nonwasteful, and
(iii) PL-fair.

Comparing this result with Theorem 4.2, we see that both MSDA and SD satisfy the
same properties.25 The next question is whether there is any reason to pick one mech-
anism over the other. Recall that in order to achieve nonwastefulness, it is necessary to
weaken fairness. PL-fairness allows some justified envy (based only on the school pri-
orities) to form. When it is not possible to eliminate all justified envy, a useful criterion
to use to rank mechanisms is the number of students with justified envy. The fewer
such students there are, the fewer complaints/attempts to circumvent the match there
will be, leading to a more successful market over the course of many years. For this
reason, several papers have used this as a useful metric to compare mechanisms. For
example, given fixed preferences and priorities, Biró et al. [2010] and Hamada et al.
[2014] search for an allocation that minimizes the number of blocking pairs, while
Abdulkadiroğlu et al. [2009] use the number of blocking pairs produced as a way to
rank mechanisms by their degree of stability in the context of the New York City High
School Match. Motivated by this, we ask whether it is possible to rank SD and MSDA
based on the amount of blocking pairs (equivalently, justified envy) produced.

Intuitively, one would expect MSDA to outperform SD, because SD ignores the school-
specific priorities completely, while MSDA tries to use them as much as possible. The
strongest possible result would be to say that MSDA produces fewer students with
justified envy than SD for every possible instance of a matching market (i.e., for all
possible preferences and priorities). However, the examples that follow show that this
is not the case; for some instances, MSDA will produce fewer, while for others, SD will.26

Example 3. Consider a market with S = {s1, s2, s3, s4},C = {c1, c2, c3}, p = (0, 0, 2),
and q = (1, 1, 3). Let �PL be such that s1 �PL s2 �PL s3 �PL s4. First, consider the
following preferences and priorities:

�c1 �c2 �c3

s2 s2 s3

s1 s3 s4

s3 s4 s2

s4 s1 s1

�s1 �s2 �s3 �s4

c1 c1 c2 c2

c2 c2 c3 c3

c3 c3 c1 c1

The matching produced by SD is

μSD =
(

c1 c2 c3
s1 s2 {s3,s4}

)
,

while the matching produced by MSDA is

μMSDA =
(

c1 c2 c3
s2 s1 {s3,s4}

)
.

It is simple to check that under μSD , only one student s2 has justified envy (toward s1),
while under μMSDA, there are two students s3, s4 with justified envy (both toward s1).

25We thank an anonymous referee for suggesting this result.
26We thank an anonymous referee for asking this question. We focus only on the comparison between SD
and MSDA because we have already shown that ESDA produces zero students with justified envy (at the
price of nonwastefulness).
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For other profiles, SD may produce more students with justified envy than MSDA.
Consider the following profile:

�̃c1 �̃c2 �̃c3

s2 s2 s3

s3 s3 s4

s4 s4 s2

s1 s1 s1

�̃s1 �̃s2 �̃s3 �̃s4

c1 c1 c1 c1

c2 c2 c3 c3

c3 c3 c2 c2

The matching produced by SD is

μ̃SD =
(

c1 c2 c3
s1 s2 {s3, s4}

)
,

while the matching produced by MSDA is

μ̃MSDA =
(

c1 c2 c3
s2 s1 {s3,s4}

)
.

It is simple to check that under μ̃SD, there are three students s2, s3, and s4 with
justified envy (all toward s1), while under μ̃MSDA, no students have justified envy.

The previous example shows that there is no way to uniformly rank MSDA and
SD with respect to the number of students with justified envy for every profile of
preferences and priorities. However, there are two other reasonable metrics that will
yield positive results: the worst case and the average case. Under both metrics, we will
find that MSDA outperforms SD.

We start here by analyzing the worst case; the average case will be studied using
simulations in Section 5. Since it is impossible to eliminate all justified envy because
MSDA and SD are nonwasteful, we ask what is the worst possible outcome that may
arise from MSDA or SD, in the sense of producing the greatest number of students
with justified envy.27 For instance, the second part of Example 3 shows that the worst
case for SD can be quite poor: three of the four students have justified envy.

Formally, let the function JESD(�S,�C) denote the number of students with justified
envy under SD at preference-priority profile (�S,�C), and define

W SD = max
(�S,�C )

JESD(�S,�C).

In words, W SD is the worst-case number of students with justified envy under SD over
all preference-priority profiles. Define JEMSDA(�S,�C) and W MSDA similarly for the
MSDA algorithm. Recall that r1 is the number of students reserved in the first stage of
the MSDA algorithm, where here, r1 is the optimized value that is determined using the
dynamic programming procedure described in Appendix C. Finally, let q = minc∈C qc.

THEOREM 4.4. In the worst case, the number of blocking pairs produced by MSDA is
weakly less than that produced by SD: W MSDA ≤ W SD. If, in addition, r1 < n − q, then
MSDA strictly outperforms SD in the worst case: W MSDA < W SD.

Thus, this theorem says that in the worst case, MSDA always does at least as well
as SD, and, under a small additional condition that will likely be satisfied in prac-
tice, MSDA will strictly outperform SD. Using the definition of r1 and recalling that

27It is obvious that the best possible outcome is no students with justified envy. While this may occur
under some profiles, we know from Section 2 that this will not hold under all profiles when we require
nonwastefulness.
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e = n − ∑
c∈C pc is the number of excess students above the sum of the minimum quo-

tas, a simple sufficient condition for MSDA to strictly outperform SD is q < e; that
is, the smallest school is not large enough to accommodate all of the excess students.
Intuitively, this will hold in markets where there are many more students than can be
accommodated in any one school alone. In fact, in the proof of Theorem 4.4, we show
that W MSDA ≤ r1 ≤ n− q ≤ W SD. Therefore, the difference (n− q) − r1 is a lower bound
on how much worse the worst case of SD will be. For example, consider the market
described in Section 4.3 of 15 students and 10 schools, with pc = 1 and qc = 2 for all
c ∈ C. Then, as argued there, the optimized value of r1 is r1 = 4, while n− q = 13, and
so the worst case under SD will have at least nine more students (out of 15 total) with
justified envy than the worst case under MSDA. As another example, we will see in the
next section a market of n = 400 students where W MSDA = 7, while W SD = 385, and
so the worst case for SD can indeed be much worse than that for MSDA.

5. SIMULATIONS

To summarize our results thus far, we have provided two new strategyproof mecha-
nisms that each satisfy one of our important normative axioms: institutions who place
a higher weight on fairness should opt for ESDA, while those that find nonwastefulness
paramount should opt for MSDA. Since both are important concerns, it is still desirable
to satisfy the weakened property as much as possible. In this section, we attempt to
quantify how far the mechanisms are from the first-best definitions of fairness and
nonwastefulness using simulations. That is, even though a school district may opt for
a nonwasteful mechanism, it still likely desires to eliminate as many blocking pairs
as possible, and vice versa for a school district that opted for a fair mechanism. The
simulations will also serve to compare our mechanisms with other popular approaches,
namely, standard DA, ACDA, and SD.

We consider a market of n = 400 students and m = 50 schools. The maximum quotas
are equal to 15 at each school, while the minimum quotas are the same across schools
and will be varied from 1 to 7.28 For the ACDA mechanism, we choose artificial caps of
q∗

c = 8 for all c.29 We choose these parameters to keep the simulations tractable while
allowing us to explore the effects of changes in the size of the minimum quota over the
full range of possibilities (from pc = 1 to pc = 7) while keeping the maximum quotas
fixed.

In order to study how correlation in student preferences affects outcomes, the student
preferences are constructed using a linear combination of a common value vector of
cardinal utilities and a private value vector for each student. For each student, we
randomly draw a private vector of cardinal utilities uniformly at random from the
set [1, 50]m. Label this vector us. We also draw a vector of common cardinal utilities
uC = (uc1 , . . . , ucm) (how this is done will be explained shortly) and then construct
the cardinal preferences for student s as αuC + (1 − α)us for some α ∈ [0, 1]. Higher
values of α thus correspond to more correlation in student preferences. We then convert
these cardinal preferences into ordinal preferences for use in the mechanism. School
priorities �c are drawn uniformly at random, and the precedence list is without loss of
generality set at s1 �PL · · · �PL sn.30

We next discuss how we construct the common component of student preferences uC .
We do this in one of two ways. For the uniform case, we set ucj = 50 − ( j − 1). For the

28Minimum quotas of 7 at each school is the largest possible (symmetric) value that still allows for some
flexibility. If pc = 8 at all c, then

∑
c∈C pc = 400 = n, and standard DA can be used.

29Similar to the previous footnote, this is the largest (symmetric) value for the artificial caps that will ensure
a feasible matching.
30See also Hafalir et al. [2013], who run simulations in a similar manner.
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Fig. 1. Nonwastefulness as a function of minimum quota for α = 0.3 (left) and α = 0.6 (right). The results
shown are for the exponential case.

exponential case, we set ucj = 50e−( j−1).31 We consider the exponential case as a way
to simulate situations in which there are some schools that are very popular, which
is common in many matching settings. In particular, schools with lower indices j will
tend to be much more popular than schools with higher indices.

Experiment 1: Nonwastefulness. We first study mechanisms by their level of waste-
fulness. As we have shown, MSDA is nonwasteful, so the major comparison here is
between ESDA and ACDA. Recall that formally we were able to show that ESDA was
weakly nonwasteful, while ACDA was not. Here, however, we compare the mechanisms
by counting the number of students who claim an empty seat at some school. For all cor-
relations and all values of the minimum quota, ESDA had fewer students claiming an
empty seat than ACDA. For the uniform case, while ESDA does indeed unambiguously
outperform ACDA, the difference is not as large and does not vary much with the quota
(data not shown). The results for the exponential case are shown in Figure 1, where we
can see that the size of the minimum quotas has an effect on how wasteful ESDA is:
when the minimum quotas are large, ESDA is close to (but still outperforms) ACDA;
as the minimum quotas decrease, ESDA begins to significantly outperform ACDA by
wasting far fewer seats. This makes intuitive sense, as when the minimum quotas
are lower, there is more flexibility, and so the rigid artificial caps begin to perform
significantly worse.

Figure 2 analyzes how different correlations α affect the number of students claiming
an empty seat (for these simulations, we fix pc = 3 at all schools). As expected, the
number of students claiming an empty seat increases as the correlation increases.
Again, we can see that ESDA outperforms ACDA for all correlations, for both the
uniform and exponential cases, with the difference between the two increasing as the
correlation is decreased.

Experiment 2: Rank Distribution. Another metric that may be of interest is the
distribution of the student rankings of the school they received. We study this by
plotting cumulative distribution functions of the (average) number of students who
received their kth or higher-ranked school under each mechanism. For example, in
Figure 3, under MSDA with α = 0.3, about 40% of students get their first choice,
about 65% of students get their first or second choice, 75% get their first or second or
third choice, and so on. This is an important statistic because many school districts

31These common vectors could also be drawn randomly from the uniform/exponential distributions, but,
since all students have the same common component, the differences in ordinal preferences are driven by
the idiosyncratic component, and choosing the common component in this way does not have qualitative
effects on the results (while at the same time simplifying the coding and debugging).
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Fig. 2. Nonwastefulness as a function of correlation α for the uniform case (left) and exponential case (right).
The results shown are for pc = 3 at all c ∈ C.

Fig. 3. CDFs of student welfare for the uniform case (left) and exponential case (right). The results shown
are for α = 0.3 and pc = 3. For visualization purposes, we only plot the rank distributions up to k = 10, but
the CDFs of ESDA and MSDA do in fact dominate ACDA for all k = 1, . . . , 50.

and other organizations release data on rank distributions as a measure of mechanism
performance. Thus, if the rank distribution of one mechanism first-order stochastically
dominates another, then, all else equal, a school district would likely prefer to use
the stochastically dominant mechanism. Additionally, because our mechanisms are
strategyproof, we can be confident that under our mechanisms, the rank distributions
will be an accurate reflection of the true student preferences.

Figure 3 shows these plots for both the uniform and exponential cases (once again,
we set pc = 3 at all schools). It can be seen that both ESDA and MSDA do in fact
first-order stochastically dominate ACDA. This dominance holds when α and pc are
varied as well. The magnitude of this dominance becomes larger as the correlation
in the student preferences (α) is decreased, and is also larger for the exponential
case. Thus, according to this metric, students will on average unambiguously prefer
our mechanisms to ACDA, in the first-order stochastic dominance sense described
previously. Intuitively, this is happening because ESDA and MSDA are allocating the
extra seats more flexibly, taking into account student demand, and so are able to
provide students with higher choices, while ACDA simply eliminates these seats ex
ante, forcing these students to be assigned to lower-ranked schools. Thus, if a school
district is interested in producing a good rank distribution, it should choose one of our
mechanisms over ACDA.

Experiment 3: Justified Envy. Since ACDA and ESDA are fair, they will always
produce zero students with claims of justified envy. Since MSDA is nonwasteful, we
know that it cannot eliminate all justified envy (in the sense of Definition 2.1), but
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Fig. 4. The number of students who have a claim of justified envy as a function of the minimum quota for
α = 0.3 (left) and α = 0.6 (right). The results shown are for the exponential case.

Fig. 5. The number of students who have a claim of justified envy as a function of correlation α for the
uniform case (left) and exponential case (right). We set pc = 3 at all c.

we can use simulations to try to understand how many students will have a claim of
justified envy, and how this depends on parameters such as the preference correlation
and the size of the minimum quotas. Figure 4 shows the results for the exponential
case (the results for the uniform case are similar). From the figures, we see that MSDA
performs well when the minimum quotas are low, with the number of claims increasing
as the minimum quotas are increased. This is intuitive, as when the minimum quotas
are relatively low, most of the students can participate in stage 1 of the algorithm, and
no students who participate in stage 1 will have any justified envy.

In addition, we can use simulations to complement the worst-case analysis from
Section 4.5 by comparing the average number of students with justified envy under
MSDA to that under SD. Recall that in Section 4.5, we showed that MSDA always
outperforms SD in the worst case. The simulations show that MSDA also performs
significantly better than SD on average. The intuition for this is that the MSDA algo-
rithm is very closely related to the DA algorithm, and so takes the school priorities �c
into account, unlike SD, which completely ignores school priorities. It may also be of
interest to note that for the markets studied in the simulations, the worst case for SD
is W SD = 385 (and this bound is actually being achieved in the right panel of Figure 4),
while the worst case for MSDA is much smaller (e.g., when pc = 1 for all c, W MSDA = 7).

Figure 5 analyzes the number of students with justified envy as a function of the
correlation α, fixing the minimum quotas at pc = 3. We see that the level of justified
envy under MSDA rises slightly as the correlation is increased but asymptotes fairly
quickly, and MSDA performs reasonably well even at high correlations. This is in
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contrast to SD, where the level of justified envy rises much more sharply with the
correlation. Thus, while both MSDA and SD will be nonwasteful, MSDA will produce
far more students with justified envy.

Allowing for Unacceptable Schools. To formally ensure that a feasible matching ex-
ists, we must require all students to rank all schools, and all schools to find all stu-
dents acceptable. While these assumptions are indeed satisfied in many markets (see
Appendix D), they may not always hold. Without such assumptions, there may simply
be no assignment that is formally feasible (consider the simple case where all students
declare all schools as unacceptable). However, even in these cases, it is still possible to
run our mechanisms. While they may end up leaving some minimum quotas unmet,
depending on how many students have a viable outside option (e.g., a private school),
our model may still be a good approximation and fill “most” of the minimum quotas.
The choice of mechanism will obviously affect the number of minimum quota seats left
empty, and so policymakers may still be interested in using a mechanism that does
a better job at filling the minimum quotas; this is the idea behind imposing (artifi-
cial) regional caps in the Japanese medical resident matching problem [Kamada and
Kojima 2015]. While artificial caps will indeed fill more minimum quotas, its price is
that more students will be left unassigned. In this section, we allow students to declare
schools as unacceptable in the simulations. The most important takeaway is that our
ESDA mechanism fills roughly the same number of minimum quota seats as ACDA,
but, because it is more flexible, it once again outperforms ACDA, in the sense of leaving
fewer students unassigned.

In public school choice, each student is entitled by law to a seat at some school.
If all schools listed on a student’s rank order list are full, then the district assigns
the student to some school for which he or she did not declare a preference (such
assignments are called administrative assignments in New York City [Abdulkadiroğlu
et al. 2005]). A common approach is to complete all students’ submitted preferences by
listing any schools not actively ranked in order of distance from the students’ homes.
With this in mind, we can expand the simulations by randomly drawing one additional
cardinal utility value for each student, representing that student’s outside option.
Then, we complete every student’s preference relation as described earlier and run
each algorithm on the profile of completed preference relations. If a student is assigned
a school that he or she disprefers to his or her outside option, he or she simply withdraws
from the match, as in real-world school choice programs.

Allowing students to withdraw clearly means we cannot guarantee that all minimum
quotas will be satisfied, but the choice of mechanism will have an important effect on
both the number of schools that fall short of their minimum quotas and the number
of students who are unassigned. Figure 6 shows the results for the uniform case with
α = 0.3 (the results for other cases are similar). As expected, DA with no caps does
a very poor job at filling the minimum quota seats, with the number of unassigned
seats rising sharply as a function of the minimum quota. This is exactly what leads
policymakers (e.g., in the army or Japanese government) to impose artificial caps in the
first place. ACDA does indeed perform better in terms of filling the minimum quotas,
but this comes at the cost of leaving more students unassigned. What is important to
note, though, is that ESDA performs roughly equivalently to ACDA in terms of filling
the number of minimum quota seats but strictly outperforms ACDA with respect to the
number of unassigned students. Because of the flexibility of ESDA, we are able to assign
more students without hurting the minimum quotas. MSDA performs intermediately
on both metrics: it leaves fewer students unassigned than ACDA or ESDA (but more
than DA with no caps), but also leaves more minimum quota seats empty than does
ACDA or ESDA (but not as many as DA with no caps).
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Fig. 6. The number of unfilled minimum quota seats (left) and number of unassigned students (right) as a
function of the minimum quota. The results shown are for the uniform case with α = 0.3.

There is of course a tradeoff between the number of minimum quotas filled and the
number of students unassigned. As can be seen in the figures, though, the cost of DA,
in terms of the number of unfilled minimum quotas, rises sharply, while the cost of
our mechanisms, in terms of the number of students left unassigned, stays relatively
low. Thus, even in situations where agents may leave the market, our mechanisms
can still be used, and in fact ESDA outperforms ACDA on these metrics. By taking
the minimum quotas explicitly into account, our mechanisms strike a balance between
unassigned students and empty seats.

6. CONCLUSION

In this article, we construct two strategyproof mechanisms that provide solutions to
minimum quota matching problems: the fair ESDA algorithm and the nonwasteful
MSDA mechanism. Both adhere closely to the popular DA algorithm, making adjust-
ments for the fact that standard DA may not satisfy the minimum quotas. In fact,
they approach the standard DA algorithm as the minimum quotas approach extreme
values. When pc = 0 for all c ∈ C, MSDA reduces to standard DA, as no students are
reserved and everyone just participates in round 1 of the algorithm. ESDA also reduces
to DA when pc = 0, because every seat is an extended seat, and e = N. Therefore, the
extended seat cap is only reached when every student is assigned a seat somewhere,
which means the algorithm has ended. So, a school never rejects a student unless it
has reached its true maximum quota qc, and ESDA is equivalent to DA. When the
minimum quotas are high, ESDA also approaches standard DA, since there are more
regular seats and fewer extended seats. When pc = qc for all c ∈ C, ESDA is once again
equivalent to DA.

We provide two mechanisms because of the impossibility of achieving fairness and
nonwastefulness simultaneously in the presence of minimum quotas. One of these
properties must be weakened, and we provide two classes of mechanisms, one for each
side of the tradeoff: ESDA is fair, while MSDA is nonwasteful. We show that both of
our mechanisms are strategyproof, which simplifies the strategic game the agents are
playing and ensures that those who would otherwise try to game the system cannot
take advantage of other agents who may always (naively) report their true preferences.
While it is necessary to weaken either fairness or nonwastefulness in the presence
of minimum quotas, it is still desirable from a normative perspective to satisfy the
weakened property as much as possible. We study this question for our mechanisms
both theoretically and using simulations, showing that our mechanisms outperform
more ad hoc approaches. ESDA is preferable to ACDA because the latter algorithm
fails to consider agents’ preferences when imposing its caps. MSDA yields far fewer
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blocking pairs than the modified serial dictatorship because the former effectively
allows DA to be run on subsets of individuals, while the latter effectively runs DA
sequentially on single individuals.

From a practical perspective, we expect our mechanisms to improve performance in
markets that currently use ad hoc approaches to ensure minimum quotas are satisfied.
We hope that the addition of minimum quota mechanisms to the market designer’s
toolkit will lead to the explicit appearance of minimum quota constraints in markets
that thus far have only dealt with minimum quotas implicitly. More explicit expres-
sion of institutions’ desiderata can allow the community of market designers to better
address these concerns and ultimately help organizations produce allocations that are
as desirable as possible.

A. PROOFS OF THEOREMS

A.1. Proofs of Theorems 3.1 and 3.3

For all parts of this proof, we let χ ESDA(·) be the ESDA mechanism and let χ̃(·) be
the output in the extended market before mapping back to the original market. Let
μ := χ ESDA(�S) be the outcome of the ESDA mechanism when the submitted profile of
student preferences is �S, and let μ̃ := χ̃ (�̃S) be the outcome in the extended market
when the extended market preferences (created from the submitted preferences) are
�̃S. Let μ̃k denote the tentative matching in the extended market at the end of round k.
Let k̄ denote the earliest round for which

∑
c∗∈C∗ |μ̃k̄(c∗)| = e. Note that

∑
c∗∈C∗ |μ̃k(c∗)| =

e for all k ≥ k̄.

LEMMA A.1. If a student s is rejected from an extended school c∗ in some round k,
then |μ̃k′(c∗)| ≤ |μ̃k(c∗)| for all k′ > k (in particular, |μ̃(c∗)| ≤ |μ̃k(c∗)|), and s′ �̃c∗ s for all
s′ ∈ μ̃(c∗).

PROOF. If |μ̃k(c∗)| = q̃c∗ , then the statement is obvious. If |μ̃k(c∗)| < q̃c∗ , then student
s was rejected because the extended school cap e was reached before c∗ was able to
admit s. Consider round k + 1, and let s′ be the student who applies in k + 1. If s′
applies to a regular school or an extended school other than c∗, then it is obvious that
|μ̃k+1(c∗)| ≤ |μ̃k(c∗)|.32 So, assume that s′ applies to c∗. Since every student who was
tentatively accepted to an extended school in round k is still being tentatively held
at that school at the beginning of round k + 1, by the construction of step 4 of the
algorithm, the extended seat cap e will be reached before school c∗ is able to admit its
(|μ̃k(c∗)| + 1)th student, and thus |μ̃k+1(c∗)| ≤ |μ̃k(c∗)|. Induction then implies that the
same holds for all k′ > k.

To show the second part, first note that since s is rejected in round k and school
c∗ admits students according to their ranking on �̃c∗ , it is clear that s′ �̃c∗ s for all
s′ ∈ μ̃k(c∗). Now, consider round k + 1. Since all students tentatively assigned to c∗
in round k are still tentatively held by c∗ at the beginning of round k + 1 and we
have already shown that |μ̃k+1(c∗)| ≤ |μ̃k(c∗)|, the lowest-ranked student in μ̃k+1(c∗)
according to �̃c∗ must be ranked weakly higher than the lowest-ranked student in
μ̃k(c∗). This, together with the fact that s′ �̃c∗ s for all s′ ∈ μ̃k(c∗), implies that s′ �̃c∗ s for
all s′ ∈ μ̃k+1(c∗). Then, by induction, s′ �̃c∗ s for all s′ ∈ μ̃(c∗).

Proof of Theorem 3.1
Group strategyproofness
We first show that if the extended market mechanism χ̃ is group strategyproof (allowing
the students to report any possible preference relation among the full set of standard
and extended schools C̃), then the ESDA mechanism χ ESDA is also group strategy proof.

32Note that in this case, the inequality may be strict: |μ̃k+1(c∗)| < |μ̃k(c∗)|. This can happen when s′ applies
to a school earlier in the picking order than c∗ and fills an extended seat that will no longer be assigned to c∗.
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We do this by showing the contrapositive: if χ ESDA is not group strategyproof, then χ̃
is also not group strategyproof. To this end, let �′

S′ be a profitable manipulation in the
original market, that is, χ ESDA

s (�′
S′ ,�S\S′ ) �s χ ESDA

s (�S) for all s ∈ S′. Consider some
student s ∈ S′, and let χ ESDA

s (�S) = c and χ ESDA
s (�′

S′ ,�S\S′ ) = c′, so that c′ �s c. Then,
consider the associated profile of preferences in the extended market �̃′

S′ , constructed
as in the description of the ESDA algorithm (where c∗ is placed immediately after c).
It must be that χ̃s(�̃S) = c or c∗ and χ̃s(�̃′

S′ , �̃S\S′) = c′ or c′∗. In either case, the fact
that c′ �s c implies that χ̃s(�̃′

S′ , �̃S\S′)�̃sχ̃s(�̃S). Since this same argument holds for all
s ∈ S′, we have shown that if the ESDA mechanism is not group strategyproof, then
the extended market mechanism (where students are allowed to submit preferences
over both extended and regular schools) is not group strategyproof. What remains to
be shown is that χ̃ is in fact group strategyproof.

To show that the extended market mechanism χ̃ is group strategyproof, we relate it to
the model of Kamada and Kojima [2015]. Kamada and Kojima use the notation of a set
of doctors D and hospitals H with capacity qh for each h ∈ H. Each hospital belongs to
exactly one of several regions R, with regional caps qr. To relate our extended model to
their model, in the Kamada and Kojima notation, we set D = S, H = C̃, where note that
we use our extended market. The capacity of each agent in C̃ is then q̃c = pc (for regular
schools) and q̃c∗ = qc−pc for extended schools. Preference relations are defined using the
extended market, as in the main text. Note that Kamada and Kojima require the hos-
pital (i.e., school) preference relations to be responsive, which is satisfied in our model.

For the set R, we divide the schools into M + 1 regions: each regular school c j
belongs to its own region rj , with regional cap equal to qrj = q̃c j (= pcj ). For the ex-
tended schools, they all belong to one region, labeled r∗, with regional cap qr∗ = e.
The set R is thus R = {r1, . . . , rm, r∗}. The target capacities in their notation are q̄c∗

j

for each extended school (the regular schools are each in their own unique region,
and so the target capacities are irrelevant). Then, note that χ̃ is equivalent to the
flexible deferred acceptance mechanism of Kamada and Kojima applied to the market
(S, C̃, R, (q̃c̃)c̃∈C̃, (qr)r∈R, �̃S, �̃C̃) with target capacities (q̄c∗ )c∗∈C∗ and school ordering,
without loss of generality, equal to c1 > c2 > · · · > cm. Theorem 2 of Kamada and
Kojima then implies that χ̃ is group strategyproof, which, by the previous argument,
implies that χ ESDA is also group strategyproof.33

Fairness
Consider any student–school pair (s, c) such that c �s μ(s). The construction of the
extended market mechanism implies that s must have been rejected from both c and
c∗. Note that for any s′ ∈ μ̃(c), we have s′ �̃c s. This is true because in the extended
market, s must have been rejected from the regular school c at some point in favor of
q̃c students with a higher priority than s. Because c only rejects a student when it is
full and a higher-ranked student applies to it, the rank of the lowest-ranked student
according to �̃c only increases throughout the algorithm, and so at the final matching
μ̃, we have s′ �̃c s for all s′ ∈ μ̃(c). On the other hand, Lemma A.1. shows that s′ �̃c∗ s
for all s′ ∈ μ̃(c∗). The fact that �̃c∗ = �̃c =�c and μ(c) = μ̃(c) ∪ μ̃(c∗) implies that s′ �c s
for all s′ ∈ μ(c); that is, s cannot form a blocking pair with c. Therefore, the ESDA
algorithm is fair.

33Aygün and Sönmez [2013] and Aygün and Sönmez [2012] point out some technical ambiguities in the
original matching with contracts model and show that a condition called irrelevance of rejected contracts
(IRC) is necessary for this result. They show that the choice functions of the schools satisfying substitutes
and the law of aggregate demand imply IRC. As noted in Kamada and Kojima [2015], these conditions are
satisfied in their model (and thus also in ours), and so the result does indeed hold.
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Proof of Theorem 3.3
That ACDA is strongly wasteful is shown by the example in Section 3 (this example
can be easily embedded in larger markets). To show that ESDA is weakly nonwasteful,
assume toward a contradiction that Z(μ) �= ∅ and |μ(μ(s))| > pμ(s) for all s ∈ Z(μ). Let
s ∈ Z(μ) be the student who is assigned to his or her final match last in the running
of the algorithm among all of the students in Z(μ). Let μ(s) = c, and let the round at
which s was assigned to his or her final match in the extended market (which can be
either c or c∗) be k.

Case (i): s (directly) claims an empty seat at a school c′. Note that k ≥ k̄.34 First,
assume that μ̃(s) = c. If |μ̃k−1(c)| = q̃c, then when s applies to c in round k, some student
must be rejected. This student will then apply to c∗ at some later stage k̂ > k̄. Since
k̂ > k̄, some student ŝ is rejected from some extended school ĉ∗. If ĉ∗ = c∗, then ŝ at
least weakly claims an empty seat at c through the chain (c′, s, c, ŝ).35 If ĉ∗ �= c∗, then
|μ̃k̂(ĉ∗)| < q̃ĉ∗ . By Lemma A.1, |μ̃(ĉ∗)| < q̃ĉ∗ as well, and so ŝ claims an empty seat at ĉ.
In either case, ŝ ∈ Z(μ), which contradicts that s was the student who was assigned to
his or her final match last in the running of the algorithm.

If |μ̃k−1(c)| < q̃c, then some student s′ must apply to c∗ at some step k′ > k (otherwise,
|μ(c)| = pc and the matching is weakly nonwasteful). We can then apply the same
argument as earlier to reach a contradiction.

A similar argument applies when μ̃(s) = c∗.

Case (ii): s weakly claims an empty seat at a school c′. Let (c0, s0, . . . , c′, s) be the
chain through which s weakly claims an empty seat. In this case, we have k > k̄.36

First, assume that μ̃(s) = c. If |μ̃k−1(c)| = q̃c, then when s applies in round k, some
student must be rejected from c. This student then applies to c∗ in some later round
k̂ > k. Since k̂ > k̄, some student ŝ is rejected from some extended school ĉ∗. If ĉ∗ = c∗,
then ŝ at least weakly claims an empty seat through the chain (c0, s0, . . . , c′, s, c, ŝ).37

If ĉ∗ �= c∗, then |μ̃k̂(ĉ∗)| < q̃ĉ∗ . By Lemma A.1, |μ̃(ĉ∗)| < q̃ĉ∗ as well, and so ŝ claims an
empty seat at ĉ. In either case, ŝ ∈ Z(μ), which contradicts that s was the student who
was assigned to his or her final match last in the running of the algorithm.

If |μ̃k−1(c)| < q̃c, then some student must apply to c∗ at some step k̂ > k (otherwise,
|μ(c)| = pc, and the matching is weakly nonwasteful). In either case, we can apply the
same argument used earlier to reach a contradiction that s was the last student in Z(μ)
assigned his or her final match.

A similar argument applies when μ̃(s) = c∗.

A.2. Proof of Theorem 4.2

Proof of group strategyproofness
To show group strategyproofness, note that in each stage of MSDA, the standard DA
algorithm is used, the latter being group strategyproof [Hatfield and Kojima 2009].
Assume the theorem is false, and consider a set of students S′ that collectively do
strictly better by misreporting �′

S′ than by reporting the truth, �S′ . Let S′′ ⊆ S′ be the
set of students that are matched in the earliest stage under the true preferences �S′ ,

34Student s must have been rejected from c′∗ at some round k′ < k. If k < k̄, then s is rejected because
|μ̃k′ (c′∗)| = q̃c′∗ . Because s directly claims an empty seat, we know that |μ̃(c′∗)| < q̃c′∗ , and so some student
s′ is rejected from c′∗ in some step k′′ ≥ k̄. Then, s′ also claims an empty seat at school c′, which contradicts
that s is the last student in Z(μ) to be assigned his or her final match.
35If |μ(c)| < qc, then ŝ directly claims an empty seat at c.
36Student s0 must have already been rejected from c0∗ prior to round k (if not, then s is not the last student
in Z(μ) to be assigned his or her final match). Similar logic implies that |μ̃k−1(c0∗)| < q̃c0∗ . The previous two
statements then imply that

∑
c∗∈C∗ |μ̃k−1(c∗)| = e, which, by the definition of k̄, gives k̄ < k.

37If |μ(c)| < qc, then ŝ directly claims an empty seat at c.
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and denote this stage as stage k. Note that there is no way in which S′ can misreport so
that a member of S′ is matched earlier than stage k. Thus, under any misreport, the
students in S′′ will be assigned in stage k. However, all of the students in S′′ becoming
strictly better off by misreporting �′

S′′ in stage k is a contradiction to the fact that
the standard DA algorithm is group strategyproof. Thus, MSDA is group strategyproof.

Proof of nonwastefulness
Next, we show that MSDA is nonwasteful. Consider a student s who claims an empty
seat at some school c. Let k be the stage of the mechanism at which student s partici-
pates and qk

c be the quotas at school c during that stage. There are two cases.

(i) In stage k, step 1(a) of the algorithm is executed. In this case, the quotas for the
standard DA algorithm run in stage k are qk

c = qk−1
c − |μk−1(c)| = qc − ∑

k′<k |μk′
(c)|.

Since s is not assigned a seat at c in k, then, since we are just using DA, it must
be that qk

c students were assigned at stage k to school c. However, adding this to
the number of students assigned in stages k′ < k, we see that |μ(c)| = qc, and thus
there are no empty seats at school c.

(ii) In stage k, step 1(b) of the algorithm is executed. In this case, the quotas are
max{0, pc − ∑

k′<k |μk′
(c)|}. In particular, we have |μ(μ(s))| = pμ(s) for all s assigned

in stage k, and so the matching is nonwasteful (since s cannot be moved without
violating the minimum quotas at his or her current school μ(s)).

Proof of PL-fairness
Consider some s such that c �s μ(s). We will show that s cannot form a PL-blocking
pair with school c. Let k be the stage at which s participates in the MSDA algorithm. If
school c has no seats available at the beginning of stage k, then every student s′ ∈ μ(c)
is such that s′ �PL s, and so s cannot form a blocking pair with c. On the other hand,
if school c does have seats available in round k, then, since within round k we just run
the standard DA algorithm, s must have applied to c and been rejected because c was
filled to its maximum quota with students ranked higher than s, that is, s′ �c s for all
s′ assigned to c in round k. On the other hand, s′ �PL s for all s′ assigned to c in rounds
k < k′. Thus, s cannot form a PL-blocking pair with c, since all s′ ∈ μ(c) are ranked
higher than s on either �c or �PL.

A.3. Proof of Theorem 4.3

Proof of group strategyproofness
Assume the contrary, and let S′ be a set of students that collectively were all made
strictly better off by misreporting �′

S′ than by reporting the truth �S′ . Let sk be the
student in S′ who is ranked highest according to �PL. Note that since all students
s1, . . . , sk−1 are not in S′, the reports of these students do not change under the misre-
port. Thus, when it is sk’s turn to choose, the set of schools available to him or her is
the same whether the group S′ reports �S′ or �′

S′ , and he or she will be assigned the
most preferred school according to his or her submitted preferences among those that
are available to him or her. This is clearly maximized by reporting truthfully, and so sk
cannot be made strictly better off under any misreport �′

S′ .

Proof of nonwastefulness
Assume the contrary, and let sk be a student who claims an empty seat at some school c.
Let k̄ be the earliest stage of the mechanism such that rk̄ is exactly equal to the number
of students left to be assigned (including student sk̄). Note that k ≥ k̄; otherwise, since
sk was not assigned a seat at c, it must be that the maximum quota at c had already
been reached before stage k, and hence sk cannot claim an empty seat at c. Then, note
that for all students assigned in stages k′ ≥ k̄, we have |μ(μ(sk′))| = pμ(sk′ ). Therefore,
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student sk cannot be moved without violating the minimum quotas at his or her current
school μ(sk). Since this holds for any student sk who claims an empty seat, the matching
is nonwasteful.

Proof of PL-fairness
Assume the contrary, and let (sk, c) form a PL-blocking pair, and let μ(c) be the final
matching produced by the serial dictatorship with minimum quotas. Since μ(sk) �= c, it
must be that at the beginning of stage k, either (1) school c has already been assigned
qc students or (2) the number of students assigned is strictly less than qc but (weakly)
greater than pc, and hence, sk cannot be assigned to c because he or she must fill
a minimum quota at another school. Note that in either case, none of the students
sk+1, . . . , sn will be assigned to c. In case (1), this is because c is filled to capacity before
stage k; in case (2), all remaining students must be assigned to a school that has not yet
reached its minimum quota, which does not include c. Thus, at the end of the algorithm,
s′ �PL sk for all s′ ∈ μ(c), and so sk cannot form a PL-blocking pair.

A.4. Proof of Theorem 4.4

We start by stating the following lemma, where recall that q = minc∈C qc and the value
of r1 used is the optimal value as determined by the procedure described in Appendix C
(see also the discussion following the definition of MSDA in Section 4). In addition, let
c ∈ arg minc∈C qc (so qc = q). The proof of the lemma is provided after the proof of the
main theorem.

LEMMA A.2. The following holds: r1 ≤ n − q.

Given this lemma, we will show the theorem by showing (1) a worst-case lower bound
for SD is n − q and (2) a worst-case upper bound for MSDA is r1.

Part (i): W SD ≥ n − q.
PROOF. We exhibit a profile (�̂S, �̂C) that produces at least n−q students with justified

envy. Define �̂S as follows: for all s, �̂s ranks school c first. The rankings of all other
schools can be arbitrary. For school c, define

�̂c : sn�̂csn−1 · · · �̂cs2�̂cs1

(recall that �PL is such that s1 �PL s2 · · · �PL sn). The priorities of the other schools
c �= c can be arbitrary. Then, SD assigns some set of students {s1, s2, . . . , sk} to school c
for some k ≤ q.38 All students {sk+1, . . . , sn} will be assigned to a school other than c and
so will have justified envy toward student s1. Since k ≤ q, there are at least n−k ≥ n−q
such students.

Part (ii): WMSDA ≤ r1.
PROOF. By definition of r1, the students who participate in stage 1 of MSDA are those

in the set S1 = {s1, . . . , sn−r1}. Because DA eliminates all justified envy, no student
s ∈ S1 can have any justified envy toward any other s′ ∈ S1. Further, no s ∈ S1 can
have justified envy toward any s′ ∈ S \ S1 either. To see this, assume that μ(s′)Psμ(s)
for some s ∈ S1 and s′ ∈ S \ S1. The fact that μ(s′)Psμ(s) implies that student s was
rejected from school μ(s′). However, the fact that s′ was assigned to school μ(s′) in stage
k > 1 implies that school μ(s′) was not filled to capacity at the end of stage 1, which

38Since we assume that n >
∑

c∈C pc, student 1 will surely be assigned to c. Not all students
{s1, s2, . . . , sq−1, sq} will necessarily be assigned to c (this will depend on the point in the running of SD
at which the minimum quota constraints become binding), but it is certain that no students outside of this
set will be assigned to c (by definition of q).
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contradicts the fact that s was rejected from μ(s′). Therefore, no students in S1 have
any justified envy toward any other student in S. Thus, the number of students with
justified envy is bounded above by |S \ S1| = r1, that is, W MSDA ≤ r1.

Then, we can combine part (1), part (2), and Lemma A.2 to get the following
inequalities:

W MSDA ≤ r1 ≤ n − q ≤ W SD.

Therefore, W MSDA ≤ W SD always, and if, in addition, r1 < n−q, the inequality is strict:
W MSDA < W SD.

PROOF OF LEMMA A.2. The number r1 is the fewest number of students who can be
reserved in stage 1 such that, no matter how the remaining n−r1 students are allocated,
the total number of minimum quota seats remaining to be filled at the end of stage 1 is
less than r1. The value of r1 can be determined by considering an adversary who, given n′
students to allocate in stage 1, allocates them in such a way as to maximize the number
of minimum quota seats that are not satisfied. For a given n′, let v(n′) be the number of
minimum quota seats that are filled in such an adversary’s assignment. Then, we let
n∗ be the largest value such that n − n∗ ≥ ∑

c∈C pc − v(n∗), and set r1 = n − n∗.39

Now, consider an adversary who is given n′ = q students to allocate in stage 1. Let
ĉ be a school with the lowest minimum quota, pĉ = minc∈C pc. Clearly, one way for the
adversary to maximize the number of minimum quota seats left unfilled is to assign
all q students to school ĉ, and under this assignment, all of the minimum quota seats
at ĉ are filled, which implies v(q) = pĉ.40 Now, recall that q ≤ qĉ ≤ n − ∑

c′ �=ĉ pc′ .41

Rearranging this inequality and using v(q) = pĉ, we can write

n − q ≥
∑
c′ �=ĉ

pc′

=
∑
c′ �=ĉ

pc′ + (pĉ − v(q))

=
∑
c′∈C

pc′ − v(q).

So, n− q ≥ ∑
c′∈C pc′ − v(q); that is, if we assign q students in stage 1, we can be certain

that the number of students remaining after stage 1 (n− q) will be at least as large as
the number of minimum quota seats remaining (

∑
c′∈C pc′ − v(q)). By definition of n∗,

we have q ≤ n∗, which implies n − q ≥ n − n∗ = r1.

B. MSDA IS MORE FAIR THAN ANY OTHER NONWASTEFUL MECHANISM

In Section 4, we introduced a weakening of the standard fairness definition to PL-
fairness, in which the school district declared some standard blocking pairs as invalid.
In this section, we generalize this concept to what we call σ -fairness. σ -fairness cap-
tures how many such blocking pairs the school district must declare as invalid, and
thus will allow us to rank mechanisms in terms of fairness. Intuitively, if the school
district must declare more blocking pairs as invalid, the matching is less fair.

39See Appendix C for further details on this procedure.
40Note that ĉ, the school with the lowest minimum quota, may or may not be the same as c, the school with
the lowest maximum quota, qc = q. However, by definition of q, we have qĉ ≥ q ≥ pĉ. Therefore, it is possible
to assign all q students to school ĉ without assigning any students to fill minimum quota seats at any other
school. Doing so also satisfies the minimum quota at school ĉ.
41The second inequality is a primitive assumption of the model. See footnote 7.
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Formally, let σc be some integer such that pc ≤ σc ≤ qc + 1.42 We say that (s, c) form
a σc-blocking pair if the following three conditions are met for some s′ ∈ μ(c):
(i) c �s μ(s)
(ii) s �c s′
(iii) If |μ(c)| ≥ σc, then s �PL s′.

We can then generalize the definition of fairness to one that eliminates all
σc-blocking pairs for some σ = (σc1 , . . . , σcm). Let �(μ) = {σ : μ contains no
σc-blocking pairs for any c ∈ C}.

Definition B.1. If σ = max{σ ′ : σ ′ ∈ �(μ)} exists, then we say that μ is σ -fair.

In the definition, we take the maximum σ vector because if (s, c) is a σc-blocking pair
for some σc, then it is a σ ′

c-blocking pair for all σ ′
c ≥ σc (but not vice versa). Thus, if

a matching contains no σ -blocking pairs and no σ ′-blocking pairs, it also contains no
σ ′′-blocking pairs, where σ ′′ = σ ∨ σ ′ is the join of σ and σ ′. More formally, the set �(μ)
is a lattice, and (provided it is nonempty) the maximum is unique.43 An important
special case of σ -fairness is obtained when σ = p. The definition of p-fairness is very
similar, though not technically equivalent to the definition of PL-fairness given in
Section 4. The reason is due to the max operator in the definition of σ -fairness. To see
the distinction, note that a matching μ that is PL-fair in the sense of Section 4 may not
be p-fair in the sense of Definition B.1 (the converse is true, however: a matching that is
p-fair is also PL-fair). This will happen, for example, when μ eliminates all q-blocking
pairs as well, in which case it would be labeled q-fair rather than p-fair. Thus, to show
that a matching is σ -fair, two conditions must be checked: (1) the matching admits
no σ -blocking pairs and (2) the matching does admit a σ ′-blocking pair for all σ ′σ. A
similar remark applies to mechanisms. Similarly, for a mechanism χ , we can define a
set �(χ ) = {σ ′ : χ produces a σ ′-fair matching for all �S and �C}. Then, we have the
following definition.

Definition B.2. If σ = max{σ ′ : σ ′ ∈ �(χ )} exists, then we say that χ is σ -fair.

Using these ideas, we can formally rank mechanisms according to fairness. Note
that a higher value of σ means that the mechanism itself is eliminating more potential
blocking pairs. Since, all else equal, a school district would desire to use a mechanism
that is more fair (i.e., a higher σ ) for both positive and normative reasons, we are
interested in finding the most fair mechanisms we can achieve without sacrificing
other goals (strategyproofness and nonwastefulness). It should be noted that while in
general, mechanisms such as standard DA and the new mechanisms we introduce can
be applied to markets of any size, it is only meaningful to compare two mechanisms
with respect to fairness for fixed minimum and maximum quotas p and q.

Definition B.3. Fix the set of schools C and minimum and maximum quota vectors p
and q, and consider two mechanisms χ and ψ , which are σχ - and σψ -fair, respectively.
If σχ ≥ σψ , then we say that χ is more fair than ψ .

Again, the comparison in the previous definition is taken with respect to the product
order. Because we use the product order, the relation is not complete: it may be that
given two mechanisms, neither is more fair than the other. While this is allowed a
priori, the next theorem shows that, under a small additional assumption that is likely
satisfied in practice, MSDA is in fact more fair than any other nonwasteful mechanism.

42For σc > qc + 1, a σc-blocking pair is equivalent to a (qc + 1)—blocking pair, and so we restrict σc to be
weakly less than qc + 1.
43Note �(μ) may be empty if there is some c ∈ C such that μ contains a σc-blocking pair for all σc. In this
case, the matching is not σ -fair for any σ . A similar statement can be applied to mechanisms.
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THEOREM B.4. Assume that p and q are such that 0 < pc < qc for all c ∈ C.44 Then:

(i) The MSDA mechanism is p-fair.
(ii) If a mechanism χ is nonwasteful and σ -fair, then σ = p. Alternatively, MSDA is

more fair than any other nonwasteful mechanism.

PROOF.
Part (i)
To prove part (i), we must show (1) that MSDA never produces any pc-blocking

pairs, and (2) for any σ p, there are preferences and priorities such that MSDA will
produce a σc-blocking pair for some c (see Remark B). Part (1) follows immediately
from Theorem 4.2 and the fact that a PL-blocking pair is equivalent to a pc-blocking
pair at any school c ∈ C.

To show part (2), consider some school c1 and let σc1 = pc1 + 1. Consider a market
of size n = 1 + ∑

c∈C pc. Let the priorities at c1 be sn �c1 s1 �c1 s2 · · · �c1 sn−1, and let
the priorities at all other schools be �c j =�PL for all j �= 1. Let the preferences of the
students be as follows. Let the first pc1 students on �PL rank c1 first (the rest of their
preferences will be irrelevant). Let the next pc2 students on �PL rank c2 first. Continue
in this manner until we reach student sγ , where γ = ∑m−1

j=1 pcj . Let the next pcm − 1
students rank cm first. The only students thus remaining are the last students on �PL,
students sn−1 and sn. Let sn−1 rank c2 first, and sn rank c1 first. Under these preferences
and priorities, the assignment of MSDA is such that every student gets his or her first
choice, except for sn, who is assigned χsn(�S) = cm. Note that |χc1 (�S)| = pc1 , and so sn
forms a σc1 -blocking pair with c1.

Part (ii)
To show part (ii), we reduce the market of n students and m schools to a smaller

market of three students and three schools. More specifically, we construct preferences
and priorities such that the assignments of students s1, . . . , sn−3 are pinned down by
σ -fairness. These students can then be removed from the problem, leaving students
sn−2, sn−1, and sn to be assigned. We then examine all possible feasible allocations for
these students and show that none of these allocations are simultaneously σ -fair and
nonwasteful for any σ such that σc > pc for at least one c ∈ C.

To this end, let χ be nonwasteful and σ -fair, and assume that σc > pc for at least one
c ∈ C. Without loss of generality, denote this school c2, and let σc2 = pc2 + 1.45 Consider
a market with n = 1 + ∑

c∈C pc students, and recall that s1 �PL · · · �PL sn.46 For the
remainder of the proof, we consider the following priority profile: �c=�PL for all c �= c2,
while �c2 is defined as s1 �c2 s2 �c2 · · · �c2 sn−3 �c2 sn �c2 sn−1 �c2 sn−2 (i.e., the priority
of the last three students is reversed).

Let S′ = S\{sn−2, sn−1, sn}. We partition S′ into msets, S′
1, . . . , S′

m (one for each school)
as follows: S′

1 consists of the pc1 − 1 highest-ranked students according to �c1 (=�PL)
and S′

2 consists of the pc2 −1 highest-ranked students in S′ \S′
1 according to �c2 . For the

remaining schools, let S′
k consist of the pck highest-ranked students in the set S′ \∪k−1

i=1 S′
k

according to �ck.
For the remainder of the proof, we consider preference profiles such that for all

k = 1, . . . , m, if s ∈ S′
k, then s ranks school ck first. Since S′

1 contains the highest-ranked

44We impose this assumption for technical convenience. If pc = 0 for some c, a 0-blocking pair is equivalent
to a 1-blocking pair. Because according to the definition of σ -fairness we look for the largest σ such that
all σc-blocking pairs are eliminated, in the general case the MSDA mechanism is actually p̄-fair, where
p̄c = max{pc, 1}. When pc > 0 for all c ∈ C, p̄ = p.
45Since σ -fairness implies σ ′-fairness for all σ ′ ≤ σ , this is sufficient to show the impossibility.
46The argument can be easily adapted for any number of students such that

∑
c∈C pc < n <

∑
c∈C qc.
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students in S according to �c1 and all student in S′
1 rank c1 first, σ -fairness implies

that all students in S′
1 are assigned to c1. If this were not the case, then some student

s ∈ S′
1 is assigned to a school worse than c1 for him or her, and some s′ /∈ S′

1 is assigned
c1 (since we know at least pc1 students are assigned to c1). But then (s, c1) forms a σc1 -
blocking pair (for any σc1 ), which contradicts that the mechanism was σ -fair. Now, S′

2
contains the highest-ranked students in S′ \S′

1 according to �c2 , and so, by similar logic,
all students in S′

2 must be assigned to c2. Continuing in this manner, all students in S′
k

must be assigned to school ck for all k, regardless of the preferences of {sn−2, sn−1, sn}.
Last, we consider the assignments of {sn−2, sn−1, sn}. Now, we know that schools

c1, c2, and c3 satisfy the following (where μ′ denotes the tentative matching, before
{sn−2, sn−1, sn} are assigned, as described in the previous paragraph): |μ′(c1)| = pc1 −1 <
qc1 , |μ′(c2)| = pc2 − 1 < qc2 , and pc3 = |μ′(c3)| < qc3 . So, we have effectively reduced the
problem to a subproblem with three students and three schools in which c1 and c2 have
one minimum quota seat remaining (and at least two seats total) and c3 has at least
one empty seat. Consider the following preferences for {sn−2, sn−1, sn} and the priorities
for the schools, as given earlier:

�c1 �c2 �c3

...
...

...
sn−2 sn sn−2

sn−1 sn−1 sn−1

sn sn−2 sn

�sn−2 �sn−1 �sn

c2 c3 c3

c3 c2 c2

c1 c1 c1
...

...
...

Clearly, of the three students, at least one must be assigned to c1 and at least one
must be assigned to c2. There are three possible ways to choose these two students:

Case (a): sn−2 and sn−1 are assigned to c1 and c2. Nonwastefulness then requires
that sn be assigned c3, and so there are two possible allocations here. One is shown by
the boxes, the other by the circles.

�sn−2 �sn−1 �sn

c2 c3 c3©
c3 c2© c2

c1© c1 c1
...

...
...

Note, however, that under the circled allocation, both sn−2 and sn−1 can form a σc3 -
blocking pair with c3 for any σc3 , since they are both ranked higher than sn according to
�PL and �c3 . Likewise, under the boxed allocation, sn−1 can again form a σc3 -blocking
pair with c3. Thus, neither matching is σ -fair.

Case (b): sn−2 and sn are assigned to c1 and c2. In this case, sn−1 must be assigned
to c3 by nonwastefulness, and there are again two possible allocations:

�sn−2 �sn−1 �sn

c2 c3© c3

c3 c2 c2©
c1© c1 c1
...

...
...
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Here, under the circled allocation, sn−2 forms a σc3 -blocking pair with c3. Under
the boxed allocation, sn forms a σc2 -blocking pair with c2, because sn �c2 sn−2 and
|μ(c2)| = pc2 < σc2 , and so sn need not be higher on �PL to form a blocking pair. Thus,
neither matching is σ -fair.

Case (c): sn−1 and sn are assigned to c1 and c2. In this case, nonwastefulness
requires that sn−2 be assigned c2, and two possible allocations are boxed/circled.

�sn−2 �sn−1 �sn

c2© c3 c3

c3 c2 c2©
c1 c1© c1
...

...
...

It is simple to see that under either allocation, |μ(c2)| = pc2 + 1, and thus both
matchings are not nonwasteful, as either sn−1 or sn can be feasibly moved to the more
preferred c3.

Thus, we see that no matching is simultaneously nonwasteful and σ -fair for any σ
such that σc > pc for at least one c ∈ C.

C. PROCEDURE FOR MINIMIZING RK IN THE MULTISTAGE MECHANISMS

We describe a procedure to obtain the smallest rk for the current minimum/maximum
quotas pk = (pk

c1
, . . . , pk

cm
), qk = (qk

c1
, . . . , qk

cm
), where the number of remaining students

is nk = n − ∑
c |μ(c)|. Our goal is to identify the smallest rk such that no matter how

nk − rk students are allocated, by allocating the remaining rk students appropriately,
we can fill all of the remaining minimum quotas. If we set rk = ∑

c pk
c , it is clear that

we can satisfy all of the minimum quotas. Our procedure checks whether we can set rk

to be smaller than
∑

c pk
c . Let us assume that when we decide to allocate n′ students, an

adversary chooses the worst outcome; that is, the adversary selects an assignment of
the n′ students such that minimum quotas are the least satisfied. For a given n′, let us
denote v(n′) as the total number of students that are effective to reduce the minimum
quotas in the assignment of the adversary. Once we know v(n′) for each n′, where
nk − ∑

c pk
c ≤ n′ ≤ nk, we can select the largest n′ such that

∑
c pk

c − v(n′) ≤ nk − n′ holds.
Then, rk is chosen as nk−n′. The remaining question is how to obtain v(·). Let us assume
the adversary first solves the following optimization problem. For a given p′, which is
the total number of students that are effective to reduce the minimum quotas, find u(p′),
which is the largest number of students that can be assigned without further reducing
the minimum quotas. If we know u(·), we can define v(n′) as v(n′) = p′, where p′ is the
smallest number such that u(p′) ≥ n′. We can formalize the optimization problem of
finding u(·) as the well-known knapsack problem (see, e.g., Kellerer et al. [2004]). In this
formalization, we assume that p′ represents the capacity of a knapsack. Further, we
assume that each school c is an item with capacity pc and value qc. Since we can partially
assign students to a school, we assume there exist enough additional items, where the
capacity/value of an additional item is 1. The goal of the knapsack problem is to select
items such that the total value is maximized under the capacity constraint. When the
capacity of the knapsack is bounded (which is true in our case), a pseudo-polynomial
time dynamic programming algorithm exists. Let us show an example. Assume there
are 15 students and 10 schools. For each school c, pk

c = 1 and qk
c = 2. Here,

∑
c pk

c = 10.
Then, we obtain u(0) = 0, u(1) = 2, u(2) = 4, . . . , u(5) = 10, u(6) = 12, . . . , u(10) = 20.
Thus, we obtain v(1) = 1, v(2) = 1, v(3) = 2, v(4) = 2, . . . , v(11) = 6, v(12) = 6, . . . .
Thus, if we set n′ = 11,

∑
c pk

c −v(n′) = 10−6 = 4. This is equal to nk −n′ = 15−11 = 4.
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On the other hand, if we set n′ = 12,
∑

c pk
c − v(n′) = 10 − 6 = 4 > 3 = 15 − 12 = nk − n′.

Thus, the largest n′ is 11 and the smallest rk is 4. In other words, if the adversary
allocates 11 students, the adversary ends up filling at least six seats that are effective
to reduce minimum quotas. Then, the total number of remaining minimum quotas is
four. Thus, we can assign remaining four students to fill these remaining minimum
quotas.

D. MARKETS IN WHICH ALL STUDENTS FIND ALL SCHOOLS ACCEPTABLE

If agents on one side of the market can find agents on the other side unacceptable, it is
obviously impossible to guarantee the existence of an individually rational matching
that satisfies all minimum quotas. There are in fact many markets where the assump-
tion of complete preference listings is satisfied. For example, in the military cadet
matching studied by Sönmez [2013] and Sönmez and Switzer [2013], cadets cannot
refuse an assignment to a branch. For many new medical residents, the first year is
often an “intern year” in which they rotate through various departments in a hospital.
Since doctors are employees of the hospital, they cannot refuse any assignment. The
assumption also holds in the Kyushu University computer science problem mentioned
in the introduction, where the students must complete a laboratory requirement to
finish their thesis, and so cannot refuse an assignment. Even in settings in which the
assumption of a complete preference ranking is not strictly satisfied, it is not an unrea-
sonable approximation. In public school choice, every student must be offered a seat
at some public school. For example, in New York City in 2002, over 30,000 students
were assigned “administratively” to a school they had not indicated a preference for,
with the vast majority of these students actually enrolling at their assigned school (see,
e.g., Abdulkadiroğlu et al. [2005]). The assignment plan in Jefferson County, Kentucky,
described in Echenique and Yenmez [2013], also suggests that the school district has a
strong degree of control over enforcing an assignment. In labor market settings such as
the hospital residency market, while doctors may only submit a short preference list,
doctors who are unmatched by the algorithm find a job through a secondary market
(the “Scramble”), suggesting that they actually find many more hospitals acceptable
than those on their submitted preference list. We also refer the reader to Section 5 of
this article, where we relax this assumption by allowing students to declare schools as
unacceptable, and show that even though we can no longer guarantee that the mini-
mum quotas will be satisfied, our mechanisms can still be used and will produce good
outcomes.

E. SPECIAL CASES: M = 2 OR PC < Q C FOR AT MOST ONE SCHOOL

This appendix shows that when m = 2 or pc < qc for at most one school, there are in
fact simple mechanisms that are strategyproof, fair, and nonwasteful.

First, consider the case of m = 2. When there are only two schools, we can simply
impose artificial caps of q̃c1 = min{n − pc2 , qc1} and q̃c2 = min{n − pc1 , qc2} and run
the standard DA algorithm with these upper quotas.47 Again, fairness and strate-
gyproofness are immediate from the properties of DA. In this special case, we also get
nonwastefulness, because if a student s is rejected from his or her first choice ci, it is
because ci is filled with q̃ci students in the first round of DA. If q̃ci = qci , there are no
empty seats at ci and so s cannot claim an empty seat; on the other hand, if q̃ci = n− p2,
then it must be that |μ(c j)| = p2, and so s cannot be moved to ci without violating the

47Note that q̃ ensures a feasible match, and so DA run with quotas q̃ will always produce a feasible matching.
When m > 2, the natural extension of these caps, namely, q̃c j = min{qck, n − ∑

k�= j pck}, will in general not
ensure a feasible match.
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minimum quota at c j . It is only in the special case of m = 2 that we can find artificial
caps that will always deliver a nonwasteful assignment: when m ≥ 3, it is in general
not obvious which school should be ex ante capped to ensure the minimum quotas at
other schools are satisfied, and if a popular school is capped, the assignment may be
very wasteful.

Next, consider the case pci < qci for only ci (and pcj = qcj for all i �= j). Here, any
feasible matching will be such that |μ(c j)| = qcj for j �= i and |μ(ci)| = n − ∑

j �=i pc j .
Since we know exactly how many seats will be assigned at every school in any feasible
matching, standard DA with maximum quotas q̃c j = qcj (= pcj ) for j �= i and q̃ci =
n−∑

j �=i pc j will produce a feasible matching for any preference profile. This will clearly
be strategyproof and fair; it is nonwasteful as well because the only “empty” seats will
be at school ci. If a student s claims an empty seat, he or she must be at a school c j �= ci
for which |μ(c j)| = q̃c j = pcj ; that is, s cannot be moved without violating the minimum
quota at c j .
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