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Abstract

We investigate whether preferences for objects received via a matching mechanism are

influenced by how highly agents rank them in their reported rank order list. We hypothesize

that all else equal, agents receive greater utility for the same object when they rank it higher.

The addition of rankings-dependent utility implies that it may not be a dominant strategy

to submit truthful preferences to a strategyproof mechanism, and that non-strategyproof

mechanisms that give more agents objects they report as higher ranked may increase market

welfare. We test these hypotheses with a matching experiment in a strategyproof mechanism,

the random serial dictatorship, and a non-strategyproof mechanism, the Boston mechanism.

A novel feature of our experimental design is that the objects allocated in the matching

markets are real goods, which allows us to directly measure rankings-dependence by eliciting

values for goods both inside and outside of the mechanism. The experimental results are

mixed, with stronger evidence for rankings-dependence in the RSD treatment than the

Boston treatment. We find no differences between the two mechanisms for the rates of

truth-telling and the final welfare.
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1 Introduction

In strategyproof mechanisms, it is always an optimal strategy for agents to truthfully report

their private information to the mechanism. This theoretical property is clearly appealing, as it

gives a mechanism designer the ability to predict play and make meaningful statements about

other criteria such as welfare. However, a growing body of empirical evidence has documented

significant deviations from truthful reporting in such mechanisms. This issue is particularly im-

portant in matching markets, the focus in this paper, in which participants submit preference

rankings of alternatives such as schools or medical residency programs to a centralized clear-

inghouse which determines the assignment. Evidence of non-truthful behavior in strategyproof

matching mechanisms can be found both in the lab (Chen and Sönmez, 2006; Pais and Pintér,

2008; Li, 2017) and in high-stakes decisions in the field (Chen and Pereyra, 2019; Shorrer and

Sóvágó, 2023; Hassidim et al., 2021).

Deviations from truthful reporting are harmful under the implicit assumption that agents’

preferences are standard economic preferences in that the values for the objects they receive in

the mechanism are determined solely by the characteristics of these objects. If this assumption

holds, then, when we observe agents rank objects they value less above objects they value more

in a strategyproof mechanism, we can claim that these deviations from truthful reporting are

indeed “mistakes”. But what if this underlying assumption is wrong? Then, these mistakes may

not really be mistakes, but rather optimal behavior from agents with non-standard preferences.

In this paper, we explore the possibility that the rankings agents submit to the mechanism

influence values. For instance, an agent may value an object higher when they rank it 2nd

compared to a counterfactual in which they receive the same object but rank it 4th, because they

suffer disutility when they get a low-ranked object. There are a number of reasons why receiving

low-ranked objects may be undesirable. These include reference-dependent loss aversion where

agents expect to get a high-ranked object and are disappointed when they do not (Dreyfuss

et al., 2022b; Meisner, 2023), ego utility where agents think that it looks good to others to

receive a high-ranked object (Köszegi, 2006), preferences that focus on beating others rather

than maximizing one’s own utility (a “joy of winning”, Cooper and Fang, 2008), or limited

information on quality that instigates a ‘curse of acceptance’ whereby receiving a low-ranked

object indicates that it is bad (Kloosterman and Troyan, 2020).

Following this discussion, we consider agents who have utility from receiving object x that

takes the form

u(x) = v(x) + ρ(rank(x))

We call v(x) the agent’s fundamental value for object x; this corresponds to the standard

economic preferences assumed in typical matching models. The second term, ρ(rank(x)), is an

additional rankings-dependent utility component that is determined by how highly the agent

ranked x in their reported preferences. When ρ(j) = 0 for all j, the model reduces to a standard

model of preferences. In this paper, we investigate the possibility that ρ may not be identically

zero, and in particular, that it is a decreasing function; in other words, all else equal, agents

receive more utility when they rank an object higher.

Investigating questions of rankings-dependent utility is important because if rankings-dependent

2



utility is an extant phenomenon, there are consequences for real-world market design. Indeed,

the main motivation for this paper was discussions with school district administrators who

continue to prefer the Boston mechanism over strategyproof alternatives such as deferred ac-

ceptance, because Boston gives more students their reported first choices. The standard critique

is that this data cannot be taken at face-value, because the Boston mechanism gives clear in-

centives for agents to manipulate their preferences, even in the absence of rankings dependence

(see Dur et al. (2018) for evidence of such behavior in a real-world school choice environment).

The response from administrators is that while they understand this argument in theory, it is

missing an important issue in practice: parents just do not like to get something they ranked

low in their list (Cambridge, MA School District, personal communication). If this is correct,

then this should be incorporated into matching market models to better reflect how real-world

agents make decisions in mechanisms and evaluate outcomes.

Thus, the main contribution of this paper is to test this hypothesis: we design and implement

a experiment to explore the existence (or lack thereof) of rankings-dependent utility. This would

be nearly impossible to do in a field setting, as people usually participate in a mechanism only

once and it would be impossible to disentangle their fundamental value from any potential

rankings-dependent utility. Thus, we use a laboratory experiment, which will allow us to do

precisely that.

The mechanisms that we use for our experiment are the random serial dictatorship (RSD)

and the Boston mechanism. We chose these mechanisms because they are two canonical mech-

anisms that are widely used in practice.1 Further, RSD is strategyproof, while the Boston

mechanism is not, yet the Boston mechanism may result in agents receiving higher-ranked

goods. This allows us to answer not only our main question of rankings-dependent utility, but

also to test the hypothesis that a non-strategyproof mechanism may be welfare-enhancing once

rankings-dependent utility is taken into account.

A novel and key feature of our experimental design is that we use real objects that are in

the room at the time of the experiment and that the participants may take home with them.

To determine whether utility is rankings-dependent, in Phase I of the experiment, we first elicit

valuations for 20 common objects (backpacks, alarm clocks, phone chargers, etc.) with the

multiple price list (MPL) elicitation method. In Phase II of the experiment, five of the objects

(a Fjallraven backpack, a Hydroflask water bottle, a Moleskine notebook, a generic ceramic

coffee mug, and a package of 4 ballpoint pens) were chosen and the participants were asked to

submit a rank-order list of these five objects to a mechanism. The mechanism (either RSD or

Boston, depending on the treatment) produces an allocation of one object to each participant.

After the mechanism, we once again elicit each participant’s valuation for the object that they

were allocated in the mechanism. The Phase I valuation measures the fundamental value v(x)

independent of any mechanism, while the Phase II valuation measures v(x) + ρ(j), the value

for x when it is received in a mechanism in which it is ranked jth. So, the difference—which we

1Deferred acceptance (DA, Gale and Shapley, 1962) is another popular mechanism used in practice. RSD is
a special case of DA where the priorities at each object are equivalent (and random). We chose RSD and Boston
because these are simpler mechanisms to explain than DA.
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call Net Value (NV)—is a measure of ρ, the rankings-dependent utility term:

NV (j) = Phase II value − Phase I value = (v(x) + ρ(j))− v(x) = ρ(j).

Under the hypothesis that utility is not rankings-dependent (ρ = 0), we should see no dif-

ference in valuations between the two phases; under the alternative hypothesis, ρ, and hence

the difference in valuations, is a non-zero function that is decreasing in the rank of the object

received.2

The use of real goods is a significant departure from the experimental literature on matching

mechanisms which usually uses fictitious “goods” with induced monetary values (Hakimov and

Kübler (2021) provide a recent survey of this literature). An induced values design is insufficient

for our purposes because rankings-dependent preferences, by construction, are subjective so we

need to elicit them. We use a standard elicitation mechanism, the multiple price list, that elicits

this subjective utility in dollar terms. Monetary prizes would not work because we would be

eliciting the value of money in dollar terms and it is almost certain that we would find that

people value money at its monetary value. We would therefore conclude that ρ(rank(x)) would

be zero because of this improper elicitation. The use of real goods also more faithfully simulates

real-world environments, where participants must form their own preferences rather than have

them being induced.3

Our main hypothesis of interest is that the NV—which measures ρ(rank(x))—should be non-

zero, and in particular decreasing in the reported rank of the good received in the mechanism.

For the RSD treatment, NV is nearly monotonically decreasing, from an average of +$2.87 for

participants who receive their top-ranked good to an average of −$0.69 for participants who

receive their fifth-ranked good (out of five). For the Boston treatment, on the other hand,

there is a much smaller increase in NV for the first ranked good (only about +$0.60), and,

looking at the raw data averages, there is no clear evidence that NV is decreasing in rank.

Non-parametric tests provide statistical support for these impressions. Moving to regression

analysis, we find some support for the hypothesis in both treatments, with the rank being a

statistically significant predictor of NV for both the RSD treatment and the Boston treatment

separately, as well as for the pooled sample. Interestingly, both the Phase I value and a risk

aversion regressor (measured using the Holt-Laury switching point) are strongly statistically

significant in the Boston treatment, but not in the RSD treatment.

Beyond simply exploring the possible existence of rankings-dependent preferences, we also

study some of the implications they may have in terms of truth-telling and welfare. With the

2It is important to emphasize that while MPL elicitation may itself be susceptible to certain behavioral
“biases” (see, e.g., Andersen et al. (2006)), we use the same elicitation method in both phases and compare
differences in valuations across phases to compute Net Value. Thus, nonzero Net Values cannot be attributed to
the choice of elicitation method. We elaborate on this point in Section 3.

3The only other example of real goods in a matching experiment we are aware of is Guillen and Hakimov
(2018), who conduct a field experiment to study the impact of top-down advice on truth-telling rates in a
classroom setting in which students were assigned to one of three term paper topics. Similar to us, they faced
the issue of how to elicit subjects’ true preferences outside of the mechanism, so they could compare to behavior
inside of the mechanism. They solved this problem by first having students believe they could choose any of the
three topics and asking them to indicate their favorite. Later in the semester, they “surprised” the students and
told them that 1/3 of the class had to be assigned to each of the three topics, and the students were asked to
submit a rank list. The final allocation was determined using the top trading cycles mechanism. Notice that this
method elicited an ordinal preference for the top choice only.
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introduction of rankings dependence into preferences, truth-telling is no longer an equilibrium

of either RSD or Boston. This is because participants now have an incentive to rank less

popular goods higher under both mecahnisms, to achieve a higher rankings-dependent utility,

and solving for an equilibrium becomes very complex. In Section 3, we provide some theoretical

results under certain simplifying assumptions that are relevant for the experiment. In particular,

we show that in equilibrium, relative to RSD, the Boston mechanism has (i) weakly less truthful

reporting (Theorem 1), (ii) weakly more agents getting their top-ranked object (Theorem 2).

and (iii) weakly higher welfare in Boston (Theorem 3).

In the experiment, we find no differences in the rates of truth-telling between the two

treatments according to a wide range of measures. This is interesting given the plethora of

experimental work going back to Chen and Sönmez (2006) that generally finds much less truth-

telling in Boston than in deferred acceptance (which is equivalent to RSD in our setting). In our

experiment, this is driven by much lower rates of truth-telling in RSD relative to the literature

(as opposed to higher rates of truth-telling in Boston).4 Note that this is what would be

expected if preferences are indeed rankings-dependent: reporting truthfully (i.e., according to

elicited Phase I values) is no longer an optimal strategy, and so the truth-telling rates in RSD

should be lower than in other experiments.5

To summarize, we find mixed evidence that utility is rankings-dependent in matching mech-

anisms. Data from the RSD treatmeant is consistent with the hypothesis, while evidence from

the Boston treatmeant is less clear-cut, though we do find rank to be a significant predictor

after controlling for subjects’ risk aversion. We find no differences in welfare in our experiment,

but this will depend on the details of the preference environment: we are the first (to our

knowledge) to show theoretically that in some settings, rankings-dependent utility can upend

the standard welfare comparisons between mechanisms. We also find much lower rates of truth-

telling in the strategyproof RSD mechanism compared to the literature, which is consistent with

rankings-dependent preferences, as the RSD mechanism is no longer strategyproof.6

A further contribution of our paper is the use of real goods in matching market experiments.

This design choice was necessitated by the nature of rankings-dependent preferences we are

trying to study, but we think it may be useful for other researchers in the experimental matching

4These comparisons are not perfect, as most of this literature studies DA, while we study RSD, which is a
special case of DA. A survey of matching experiments by Hakimov and Kübler (2021) reports truth-telling rates
in the (arguably more complex) DA mechanism in the range of 55-85%, though this varies with the details of
the treatment. Li (2017) does study RSD specifically, and finds truth-telling rates of about 60%, compared with
40% for our experiment. All of these experiments use an induced-values design.

5While the lower rates of truth-telling in RSD is an interesting result, and is consistent with our theory,
the lack of differences across treatments is less significant, and could just be an artifcat of the details of our
experiment, and in particular the goods that were chosen. (Indeed, our theoretical results only say that RSD
should have weakly higher rates of truth-telling, which is consistent with the data.) Further, the use of real goods
also may complicate comparisons with previous studies: with induced values, if a participant does not understand
the mechanism, a natural default may be to just rank the fictitious goods according to the values given, which
would lead to higher rates of truth-telling in induced values environments. Thus, while induced values provide
greater levels of control for the experimenter, the results from such experimental designs may not carry over to
real-world settings where actual goods are being distributed.

6In general, solving for the equilibrium is very difficult once rankings-dependence preferences are introduced,
and our theoretical results hold only under particular assumptions on the preference environment. While we
attempted to replicate this in the experiment as much as possible, the use of real goods instead of induced values
inherently gives us less control over the preferences. Thus, the lack of differences given the specific objects and
design of our experiment does not preclude differences in other environments.
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literature, which as to now has almost exclusively used induced values designs. While the use

of real goods certainly complicates some aspects of experimental design and analysis, it also

more faithfully simulates real-word markets, where agents must form their preferences rather

than having them given to them. To the extent that preference formation plays a role in how

agents participate in matching mechanisms—whether via rankings-dependence as we model it,

or other channels—real goods experiments will be important in understanding the outcomes

of matching mechanisms. We provide some initial evidence of such a phenomenon in a simple

setting (RSD), though much more work is needed to more thoroughly understand how agents

form preferences in matching settings.

Related Literature

One of the main motivations for this paper is the growing body of evidence of “mistakes” in

strategyproof mechanisms (see the first paragraph of the introduction for references). There

are several ways one can proceed from these observations. Assuming that the underlying pref-

erence model is correct, and these mistakes are actually mistakes, one response is that the

designer should simply invest more in communicating how the mechanism works and teaching

the participants that truthful reporting is in their interest. Rees-Jones and Skowronek (2018)

conduct a “lab-in-the-field” experiment in which they recruit medical students who have just

gone through the National Resident Matching Program (NRMP) to participate in a related

lab experiment, and find a significant fraction of participants did not report truthfully, despite

having just participated in the same mechanism in a high stakes environment in which the

NRMP invests heavily in tutorials describing how the mechanism works. If this approach is

unsuccessful, another possibility is to design mechanisms that are more easily recognizable as

strategyproof by the participants on their own. For instance, Li (2017) introduces the notion of

obvious strategyproofness as a desideratum for mechanism design, with the idea being that if the

mechanism is designed to satisfy this criterion, the players will be able to recognize themselves

that truthful reporting is a dominant strategy, and will be more likely to report truthfully. Li’s

paper has led to a rapidly expanding literature on obvious mechanism design as a way to limit

mistakes by participants.7

We take a different approach in this paper, which is a reassessment of the assumption that

agent preferences are determined solely by the characteristics of the goods they receive. We

discuss a few other recent papers that have explored related ideas.

The closest paper to ours theoretically is Meisner (2023). He proposes an equivalent model

of utility that consists of both a fundamental value plus a rankings-dependent component. He

then focuses on strategyproof mechanisms, and proves that any non-truthful preference ranking

can be rationalized as optimal for some beliefs over match probabilities (what he refers to

as “attainability distributions”, which are determined by the mechanism itself combined with

beliefs about the strategies of the other agents).

Meisner and von Wangenheim (2021), Dreyfuss et al. (2022b), Dreyfuss et al. (2022a), and

Chen et al. (2023) all focus specifically on expectations-based reference-dependent preferences

7Theoretical explorations include Ashlagi and Gonczarowski (2018), Troyan (2019), Pycia and Troyan (2023),
and Bade and Gonczarowski (2017). For lab experiments, see Zhang and Levin (2017) and Bó and Hakimov
(2023).
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(EBRD preferences for short, also referred to as EBLA for expectations-based loss aversion;

Kőszegi and Rabin (2006)) as a possible explanation for seemingly dominated choices in strat-

egyproof mechanisms. Meisner and von Wangenheim (2021) introduce loss aversion into school

choice problems and theoretically study its implications for submitting non-truthful rank order

lists. Dreyfuss et al. (2022b) re-evaluate the experimental data of Li (2017), who finds mistakes

in the non-obviously strategyproof RSD mechanism, and find that EBRD preferences might

explain this behavior.

Dreyfuss et al. (2022a) build a matching model with EBRD preferences and conduct a

lab experiment using four different implementations of the DA mechanism: static (student)

proposing, static receiving, dynamic proposing, and dynamic receiving. Using a model of loss

aversion, they derive predictions on the relative proportion of non-truthtelling behavior across

these four mechanisms.8 They show that, for plausible values of the loss aversion parameter,

the trends in the data qualitatively match those predicted by the theory; that is, they find more

truthtelling in the treatments that are predicted to have higher rates of truthtelling according

to the theory.

While similar in motivation, the paper by Dreyfuss et al. (2022a) is very different from ours,

from both a methodological and experimental design perspective. They consider a particular

utility model (EBRD) and show that the trends across treatments in the data qualitatively

match the trends predicted by EBRD. While these trends are suggestive evidence for EBRD

preferences, in terms of overall levels, they also find much more non-truthtelling behavior than

the EBRD predictions, and write that “the EBRD model, while explaining a lot of the observed

data, appears to be an incomplete explanation”. For instance, another explanation could be

that subjects misunderstand the game they are playing. Because of this potential confound,

Chen et al. (2023) design a much simpler experimental environment to eliminate the possibility

of game form misunderstanding, but which still predicts non-truthtelling behavior for loss-

averse subjects. In this simplified environment, they find very high rates of truth-telling and no

evidence that loss aversion drives misreporting behavior. This leads Chen et al. (2023) to argue

that loss aversion is likely not a relevant explanation for mistakes in matching mechanisms.9

Note that both Dreyfuss et al. (2022a) and Chen et al. (2023) use induced values designs, so

neither experiment would be able to capture other aspects of rankings-dependent preferences

that would only be found with a real-goods design, as in our paper.

Our experiment, on the other hand, was designed to provide a direct measurement of non-

standard preferences. While we are agnostic on the underlying source, we think this is a feature,

rather than a bug, of our design: by taking a direct measurement of non-standard preferences,

we avoid the potential confounds that arise in trying to indirectly infer their existence from

qualitative trends across treatments that would be predicted by a particular theory, as discussed

above. We think this makes our paper a useful complement to the other approaches that have

been taken. Further, both Dreyfuss et al. (2022a) and Chen et al. (2023) use induced values

and reduce the game to an individual decision problem where participants are effectively asked

to choose between objective lotteries. We use real goods, and have participants play in a

8What we call non-truthtelling behavior they refer to as “non-straightforward behavior”.
9In addition to risk aversion, we also had our subjects complete a standard loss aversion task. We did not

find loss aversion to be a significant predictor in any of our regressions.
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multiplayer game. This is important to the extent that factors such as preference formation

itself over objects and relative comparisons of one’s own outcome against others influence agent

preferences, issues which are likely to be present in real-world settings. While the goal of the

present paper was more modest—to simply evaluate the existence of non-standard preferences—

we think that a natural direction for future work is deeper analysis of the microfoundations

behind them.

2 Model

2.1 Preferences and Mechanisms

There is a set I = {i1, i2, . . . , iN} of agents and a set X = {x1, x2, . . . , xN} of objects. A

matching is a function µ : I → X where µ(i) ∈ X is the object that is assigned to agent i.

There are an equal number of agents and objects, and so we assume that all matchings assign a

unique object to every agent, i.e., if i 6= j, then µ(i) 6= µ(j). LetM denote the set of matchings.

Notice that we assume each object has capacity 1, an equal number of agents and objects, and

the objects have no preferences or priorities over the agents. All these restrictions can easily

be generalized to capture important features of real-world settings such as school choice. We

make these assumptions because they are all that is needed to study our main phenomena of

interest, and they ensure that the model corresponds as directly as possible to the experiment

that we run.

Let P be the set of all strict ordinal rankings over X. For any Pi ∈ P, we write xPiy to

denote that agent i strictly prefers x to y. We use Ri for the corresponding weak relation, i.e.,

xRiy if either xPiy or x = y. A mechanism is a function ψ : PN →M. We write ψi(P ) ∈ X
for the object allocated to i at preference profile P = (P1, . . . , PN ). Every mechanism induces

a game in which the action space for each agent is P.

In most of the matching literature, it is assumed that an agent’s utility is determined solely

by the object received. We deviate from this assumption by allowing an agent’s utility to depend

on both (i) the object received and (ii) the position in which they ranked the object in their

preferences. Formally, agent i’s utility from submitting a reported preference ranking Pi and

receiving object x is

ui(x, Pi) = vi(x) + ρ(j). (1)

where j = |{x′ ∈ X : x′Rix}| is the rank of object x in the reported preference list. We call vi(x)

agent i’s fundamental value for object x, and ρ(j) agent i’s rankings-dependent utility

from receiving the object that she ranked in the jth position. Note that in this formulation, the

function ρ(·) is the same for all agents. This could be generalized to allow for heterogeneity,

but given our experimental design, it is infeasible to measure a different ρ(j) for each agent and

each j, and so we omit this generalization in the model.

The main assumption of our model is that, all else equal, participants will prefer to get

objects when they rank them higher in their submitted preferences. For example, receiving

good x provides more utility when it is ranked 2nd than when it is ranked 4th. Hence, we

assume the function ρ is such that ρ(1) ≥ ρ(2) ≥ · · · ≥ ρ(n). We discussed in the introduction
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possible microfoundations for rankings-dependent utility. In the experiment, we do not attempt

to discern between these explanations, but seek simply to determine whether preferences do in

fact depend on rankings.

For our experiment, we consider two mechanisms which we describe here: random serial

dictatorship and the Boston mechanism.

Random Serial Dictatorship (RSD)

The random serial dictatorship mechanism works as follows. Each agent submits a strict ordinal

ranking over all of the objects. The mechanism then draws an ordering of the agents randomly

from the uniform distribution over all possible agent orderings, and proceeds in rounds as

follows:

• Round 1: The first agent in the order is assigned their top-ranked object according to

their submitted preference ranking.

• Round 2: The second agent in the order is assigned their top-ranked object that was not

assigned in the first round.

• Round k = 3, . . . , N : The kth agent in the order is assigned their top-ranked object that

was not assigned in any earlier round 1, . . . , k − 1.

Boston Mechanism

The Boston mechanism works as follows. Each agent submits a strict ordinal ranking over all

of the objects. The mechanism draws an ordering of the agents randomly from the uniform dis-

tribution over all agent orderings, which will be used as a “tie-breaker” below. The mechanism

then proceeds in rounds as follows:

• Round 1: The mechanism considers the top-ranked object of each agent. If only one

agent has ranked an object first, the object is assigned to that agent. If more than one

agent has ranked an object first, the mechanism assigns the object to the agent among

them who was ranked highest in the random agent ordering drawn above. The agents and

objects that were assigned leave the market. If all agents have been assigned an object,

the mechanism ends. Otherwise, all agents and objects that were not assigned in this

round proceed to the next round.

• Round 2: Only agents who were not assigned an object in the first round participate.

The mechanism looks at the second-ranked choices of all such agents. If only one agent

has ranked an object second, the object is assigned to that agent. If more than one agent

has ranked an object second, the mechanism assigns the object to the agent among them

who was ranked highest in the random agent ordering drawn above. The agents and

objects that were assigned leave the market. If all agents have been assigned an object,

the mechanism ends. Otherwise, all agents and objects that were not assigned in this

round proceed to the next round.
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• Round k = 3, . . . ,M : The mechanism proceeds exactly as in round 2, except it now

considers the kth-ranked objects in the rank lists of the agents who participate in this

round.

The definitions of RSD and Boston given above are simplifications of a more general class of

mechanisms. It is easy to extend the mechanisms to incorporate features such as multiple copies

of each object, outside options, and priority lists over the agents for each object, all of which are

common in settings such as school choice (see, for instance, Abdulkadiroğlu and Sönmez (2003)).

We use these definitions because they are sufficient to capture the properties of assignment

mechanisms that are the focus of our investigation while still remaining parsimonious enough

to design a lab experiment to cleanly test our hypotheses of rankings-dependent preferences.

2.2 Incentives and Welfare

Two key concerns when designing any allocation mechanism are the incentives they provide

participants with regard to reporting their preferences and the equilibrium welfare of the result-

ing allocation. In this section, we briefly discuss these issues for both RSD and Boston. After

discussing the details of the experimental design, we will return to these issues with formal

theorems and experimental hypotheses based on them.

Truth-telling

A common desideratum when designing a matching mechanism is strategyproofness, the prop-

erty that it is a weakly dominant strategy in the mechanism-induced game for each agent to

submit their true preference ranking to the mechanism. In the standard matching literature

where behavior is not rankings-dependent (i.e., p(j) = 0 for all j), this corresponds to submit-

ting the preference ranking that lists objects in decreasing order of fundamental value. This

strategy is, for obvious reasons, called the truthful strategy. Without rankings-dependent util-

ity, RSD is well-known to be strategyproof while Boston is not. Intuitively, in Boston an agent

with fundamental values vi(x) > vi(y) may want to lie and report yPix, if x is likely to be

very popular while y is almost as good and easier to get, because failing to get x might lead

to getting an even worse object z. Indeed, Troyan and Morrill (2020) show that not only is

Boston manipulable, it is obviously manipulable, and there is empirical evidence from school

choice data that show families engaging in precisely this type of non-truth-telling behavior (Dur

et al., 2018).

With the introduction of rankings-dependent utility in Equation (1), the strategyproofness

property is not well-defined because there is no one-to-one mapping of utility to a preference

ranking of the objects. Nevertheless, it is straightforward to still define the truthful strategy with

respect to fundamental values exactly as above as the strategy that submits a preference ranking

that lists objects in decreasing order of fundamental value. Though this terminology is not as

descriptive in this model where fundamental value does not reflect utility, we continue to use it to

maintain consistency with the previous literature. Due to the rankings-dependent utility, it is no

longer the case that choosing the truthful strategy is weakly dominant in RSD. There is extensive

empirical and experimental evidence (see the first paragraph in the introduction for references)
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that agents do not submit the truthful strategy to the mechanism in deferred acceptance, a

mechanism that is equivalent to RSD in our setup. Indeed, this is the main motivation for

incorporating and investigating rankings-dependent utility in the RSD mechanism.

Efficiency and Welfare

Without rankings-dependent utility, RSD always produces an assignment that is Pareto efficient

ex-post: the first agent in the randomly chosen RSD ordering, say i1, is assigned to her top-

ranked object. The second agent, say i2, is assigned to her highest-ranked object that was not

taken by i1, so the only way to make i2 better off is to give her the object that went to i1

(assuming i2 prefers it), but this makes i1 worse off. Continuing this argument, it is easy to see

that each successive agent can only be made better off by taking the assignment of some earlier

agent, and thus at least one of these agents must be worse off.

However, once agents’ fundamental values and rankings-dependent utilities are taken into

account (as opposed to just ordinal preferences), RSD may no longer perform as well on welfare

grounds. For instance, consider 3 agents and 3 goods, with the following fundamental values.

vi(x) vi(y) vi(z)

i1 1 0.7 0

i2 1 0.7 0

i3 1 0.7 0

Also, let ρ(1) = 0.1 for all agents, and ρ(2) = ρ(3) = 0. It is easy to check that truth-

telling with respect to fundamental values (i.e., all agents report ordinal preferences xPyPz)

is the unique equilibrium of RSD so the issue in the previous section is not relevant. No

matter the random ordering, all final allocations result in a sum of utilities that is equal to

WRSD = (1 + 0.1) + 0.7 + 0 = 1.9.

Next, consider Boston with the following strategies: agents i1 and i2 report truthfully with

respect to fundamental values, while agent i3 reports yPzPx. It can be checked that this is an

equilibrium. In this equilibrium, one of the agents—agent i3 in our example—reports her second-

best good, good y, first. This ensures that she gets y for sure, but also leaves the remaining two

agents with a higher chance of receiving the best good, x (in particular, agents i1 and i2 each

have a 50/50 chance of receiving x and z). Since the preferences of i1 and i2 are symmetric,

any final allocation results in a sum of utilities WB = (1 + 0.1) + (0.7 + 0.1) + 0 = 2 > WSD.

Thus, Boston results in a greater overall total welfare. Intuitively, the reason is that Boston

incentivizes some agents to rank the good with the second-highest fundamental value first. In

equilibrium, this means that there will be two agents who are getting a good ranked first, and

so, both of these agents will receive the rankings-dependent utility ρ(1). This is our motivation

for comparing the RSD and Boston mechanisms in our experiment. In the next section, we

will provide formal theorems and corresponding experimental hypotheses that generalize these

intuitions for our experimental environment.10

10There is a recent strand of literature that also emphasizes that non-strategyproof mechanisms may outperform
strategyproof ones in equilibrium even with just standard preferences because the opportunity to “misrepresent”
their preferences gives a channel by which agents can express some information on their cardinal utilities (Ab-
dulkadiroğlu et al., 2011; Troyan, 2012; Abdulkadiroğlu et al., 2015; Fragiadakis and Troyan, 2019). While this
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3 Experimental Design

The experiment consists of two phases that participants complete in succession. We have two

treatments that only differ in the matching mechanism run in Phase II. These treatments are

RSD which runs the random serial dictatorship and Boston which runs the Boston mechanism.

Hereafter, we will continue to use italics for the treatment names and regular text for the mech-

anisms. We will describe each phase here, and the full instructions are provided in Appendix

D.

3.1 The Two Phase Experiment

Phase I

Phase I is identical for both treatments. The participants complete 22 incentivized tasks.

The first 20 tasks consist of valuing 20 different objects with the multiple price list elicitation

method. See Appendix C for a description of each of the 20 objects including the monetary

values (measured as the prices on Amazon.com where we purchased the objects) and average

elicited values.

The multiple price lists are framed as willingness to accept (WTA) and consist of two screens.

The first screen elicits the value of each object in dollar increments and the second screen elicits

the value in two cent increments. In particular, for each of the 20 objects, the participants are

told they have been allocated the object and then have the opportunity to exchange the object

for various amounts of money. On the first screen, they see a list where each row represents

keeping the object or exchanging it for an amount of money that ranges from $1.00 to $50.00.

The participants choose the row that is the last row where they prefer keeping the object to

exchanging it. We provide a screen shot in Figure 2a in Appendix D where the participant has

selected the row with the dollar amount $16.00. The participants can change their minds and

click a different row, and then confirm their choices once they have come to a final decision.

The second screen is presented identically to the first except that the amounts of money range

from $x.02 to $x+1 in $0.02 increments where x is the value of the last row (the one they had

selected) from the first screen. We provide a screen shot in Figure 2b in Appendix D where the

participant has selected the dollar amount $16.56.

In order to assist the participants in this valuation task, pictures of each object are provided

on the screens as the objects are valued. We also had the physical objects at the front of the

room and would bring them over for further inspection on request. All participants value the

frisbee first, the set of picture frames second, the cable spirals third, and the final 17 objects

in random order. The reason to fix the first three objects is to allow participants to gain

familiarity with the elicitation method. These three objects are not relevant for Phase II and

are not analyzed in the results section.

If one of these valuation tasks is selected for payment for a given participant, we pay the

participant in the standard way for multiple price lists. We randomly and uniformly draw a

number between 1 and 50 which corresponds to a dollar amount the participant will receive.

channel is still present in our model, additionally including rankings-dependent utility will amplify the welfare
gains of non-strategyproof mechanisms.
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The participant then receives the object if they had indicated that they preferred the object

to that amount of money and the dollar amount if they had indicated that they preferred the

amount of money to the object. In the case that the randomly drawn number is exactly equal

to the dollar amount in the last row where they would keep the object (the row they had clicked

on the first screen), then a second randomly and uniformly drawn number between 1 and 50 is

generated. In this case, the number corresponds to the two cent increments on the second screen

(1 was $0.02, 2 was $0.04, etc.) and the participant receives the object if they had indicated

that they preferred the object to the amount of money and the dollar and cents if they had

indicated the opposite.

The final two tasks are incentivized risk aversion and loss aversion elicitation tasks. The

risk aversion task is the classic Holt and Laury (2002) price list task. To be consistent with

the previous 20 tasks, there are 50 rows of lottery choices between Lottery A, high payoff of

$24.00 with x% chance and low payoff of $20.00 with 100 − x% chance, and Lottery B, high

payoff of $38.00 with x% chance and low payoff of $12.00 with 100−x% chance. The chance of

the high payoff, x, increases across rows from 2% to 100%. The participants select the last row

where they preferred Lottery A. If this task is selected for payment for a given participant, we

randomly and uniformly draw a number between 1 and 50 and run Lottery A if that number

is less than or equal to the number of the last row where they preferred Lottery A, and we run

Lottery B otherwise.

The loss aversion task compares risky choices with gains to risky choices with losses. Again,

there are 50 rows of lottery choices. For this task, the participant chooses between Option A,

$20.00 for sure plus a 50% chance of a $10.00 bonus, and Option B, $30.00 for sure plus a 50%

chance of losing $x. The loss in Option B varies from $20.00 to $0 in increments of $0.40 across

the rows. The participants select the last row where they prefer Option A. If this task is selected

for payment for a given participant, we randomly and uniformly draw a number between 1 and

50 and run Option A if that number is less than or equal to the number of the last row where

they preferred Option A, and we run Option B otherwise.

Finally, the participants complete an unincentivized questionnaire to conclude the phase.

The questionnaire includes the standard cognitive reflection task questions as well as demo-

graphics and academic endeavors.

Phase II

After completing the 22 tasks and questionnaire in Phase I, the participants move on to

Phase II. In this phase, the participants are randomly matched into groups of five to engage

in a matching market with the five goods. We use the same five goods for Phase II in every

session, and they are all taken from the set of twenty goods valued in Phase I. The goods for

Phase II are:

1. Fjallraven backpack: A small 16L gray backpack from the popular brand Fjallraven with

a monetary value of $66.95.11

11The goods were purchased on Amazon.com. The prices on Amazon vary slightly from day to day so the
monetary values given here are approximate.
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2. Hydroflask waterbottle: A light-blue reusable water bottle from the popular brand Hy-

droflask with a monetary value of $32.96.

3. Moleskine notebook: A notebook with 192 pages and a high-quality black cover from the

popular brand Moleskine with a monetary value of $21.90.

4. Blue ceramic mug: A generic blue ceramic mug with a monetary value of $11.99.

5. Set of 4 Uni-ball pens: A set of four fine-point black rollerball pens from the well-known

brand Uni-ball with a monetary value of $6.88.

Each participant engaged in a matching market corresponding to their treatment, RSD or

Boston, just one time. They then value the good they received from the mechanism using the

exact same multiple price list elicitation method used for the 20 goods valued in Phase I.

At the end of the experiment, participants were paid for a single task that was equally likely

to be one of the tasks in Phase I or the unique task in Phase II. In the case a task from Phase

I was selected, each of the 22 tasks was equally likely to be selected for payment. As there are

more tasks in Phase I, each is less likely to be selected for payment than the Phase II task. We

discuss the reasons for this payment structure in Remark 3 in the next subsection.

Remark 1. The participants only engage in a single matching market. We chose this method

so that they would feel greater ownership of the good they received. In order to make sure the

participants fully understood the procedure we presented them with instructions that included

an example (with different goods than in the actual market), had them complete a quiz regarding

a second example which required them to answer all the questions correctly before moving on,

and provided them with an 8 minute practice period in which they could engage in as many

markets as they wanted against robot players. We feel comfortable that they understood the

mechanisms, because they almost all received 100% on the quiz the first time, rarely used the

full 8 minutes to practice against the robots, and because neither the Boston nor the RSD

mechanisms are particularly complicated mechanisms.

3.2 Theoretical Predictions and Experimental Hypotheses

Rankings-Dependent Utility

Our first and main hypothesis assesses whether preferences are indeed rankings-dependent.

Recall our model with rankings-dependent utility, Equation (1):

ui(x, Pi) = vi(x) + ρ(j).

To test the hypothesis that preferences are rankings-dependent, we are interested in the term

ρ(j). Our experimental design allows us to recover exactly this. Suppose that, in the matching

mechanism in Phase II, a participant i receives object x, which was reported as her jth ranked

good. The valuation elicitation at the end of Phase II measures vi(x) + ρ(j). In Phase I, the

participant also valued object x, independent of any mechanism or ranking context. Thus, the

Phase I valuation of object x is vi(x). So the net value, NV (j), the difference in valuations for
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the same object x between Phase II and Phase I, is the rankings-dependent component ρ(j):

NV (j) = Phase II value - Phase I value = (vi(x) + ρ(j))− vi(x) = ρ(j) (2)

If ρ(j) is decreasing in j as assumed in Section 3, the same should be true for the net value

between Phase I and Phase II. This gives rise to our first hypothesis.12

Hypothesis 1. Participants prefer to get objects they rank higher, and so NV (j) will be de-

creasing in submitted rank j.

Remark 2. One might be concerned that in the course of the experiment subjects are asked

to value one object twice, and a desire to appear “consistent” could bias the results. First,

notice that such a desire actually works against finding an effect, as it will tend to compress

Net Value towards 0; in other words, if we do find an effect, it will not be driven by the desire

for consistency. Second, while impossible to eliminate completely, we designed the experiment

to mitigate this concern as much as possible. By placing the questionnaire and explanation of

the matching mechanisms in the middle of the experiment (so that, by the time they submitted

their Phase II valuation, a lot of time had passed) and having them value 20 objects in Phase

I (15 of which were not relevant for the experiment), we are confident that most subjects did

not remember their initial valuation for the good that they received in Phase II.

Remark 3. [Endowment Effect] The “endowment effect” is the well-established finding that

participants value objects more when they own them than when they do not (Ericson and Fuster,

2014). One of the leading explanations for the endowment effect is expectations-based loss

aversion. Expectations-based loss aversion is also a potential explanation for rankings-dependent

utility in matching mechanisms, as shown by Dreyfuss et al. (2022a) (cf. the Introduction, where

we discuss this in more detail). However, there are also two other sources of “endowment effects”

that could be present in our experiment: the elicitation mechanism itself and the probability

that a given task is selected for payment.

To the extent that rankings-dependent is due to expectations-based loss aversion, the first

potential endowment effect falls under what we are trying to measure, while the other sources

are not of interest to us. With this in mind, we designed the experiment specifically so that these

latter two phenomena do not affect our hypotheses. First, we use the same WTA elicitation

mechanism in both Phases so any endowment effect from the elicitation mechanism immediately

cancels out when calculating Net Value. The probability of payment effect is a little trickier, but

it is also not an issue for testing our hypotheses because they are statements about comparisons

across Net Values for which an added constant is irrelevant.

To make this point about probability of payment more formally, we can augment Equation

1 by adding a “probability of payment” endowment effect term to the utility function as follows:

ui(x, Pi) = vi(x) + ρ(j) + ξk

12Several commenters have mentioned that we might also want to consider the percentage change in Net
Value—i.e., calculate Net Value = (Phase II value - Phase I Value)/(Phase I value)—in addition to a linear
formulation. A problem arises in that this does not allow us to cleanly disentangle the fundamental value from
rankings dependence. This is because we would have NV (j) = ρ(j)/vi(x), and we would be unable to determine
whether any changes in NV were due to changes in ρ or changes in v.
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where ξk represents the endowment effect for phase k = I, II. Because the Phase II task has a

higher probability of being chosen for payment, we expect ξII > ξI . Then, Net Value (equation

2) becomes

NV (j) = Phase II value - Phase I value

= (vi(x) + ρ(j) + ξII)− (vi(x) + ξI)

= ρ(j) + ξII − ξI .

Hence, it is true that Net Value entangles rankings-dependence with the probability-of-payment

endowment effect so we cannot make any statements about the exact values we elicit for Net

Value. Importantly, though, when we compare across rankings, the probability-of-payment

endowment effect constant is irrelevant. Specifically, Hypothesis 1 predicts that Net Value is

decreasing across rank which is still the case when we add a constant to all Net Values.

In other words, one possible explanation for rankings-dependence is a difference in endow-

ment effects between receiving a good from a mechanism in which it is ranked and receiving it

independent of any mechanism context, and our experiment is designed to pick this up. How-

ever, our agnosticism on the source of rankings dependence allows for other explanations as well.

The goal of our experimental design was to provide direct evidence of rankings dependence that

might arise from many sources, rather than look at one specific microfoundation.

Truth-telling

Our next two hypotheses concern truth-telling and preference-reporting. Recall that, in the

standard matching model without rankings-dependent utility, RSD is strategyproof while the

Boston mechanism is not. In the case of Boston, agents may manipulate their preferences

implied by their fundamental values by ranking popular objects lower, because they are likely

to be taken in earlier rounds of the mechanism. But how do these properties extend to the case

of rankings-dependent utility?

Truth-telling with respect to fundamental values will no longer be a dominant strategy

of either mechanism, because agents may want to manipulate and rank objects that are less

popular highly so that they receive a higher-ranked object and the corresponding increase in

ρ(j). In general, it is difficult to solve for an equilibrium with rankings-dependence. However,

by putting more structure on the model, we will be able to show some results. In particular,

we make the following assumption:

Assumption: For all xj ∈ X, vi(xj) = vi′(xj) := vj for all i, i′ ∈ I and that these values are

common knowledge. Further, v1, v2 � v̄ = v3 = · · · = vn.

In words, we assume that there is complete information, a common ordinal preference, and

that objects x1 and x2 are much better than the other objects.13 The motivation for this

assumption is that goods 1 and 2 are strongly enough preferred by all agents to all other goods,

13Though unlikely to ever hold exactly, common ordinal preferences is an assumption commonly made to
approximate highly correlated preferences while still maintaining analytic tractability (see, e.g., Abdulkadiroğlu
et al. (2011), Featherstone and Niederle (2016), and Fragiadakis and Troyan (2019)). As we explain in this
paragraph, we think our preference assumption captures well the fundamental strategic tension we wanted to
induce with our selection of objects, which is whether to rank the backpack or the water bottle first.
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so that the main strategic decision is whether to rank x1 or x2 first. The exact goods in the

experiment were chosen with this model of valuations in mind: given the popularity of Fjallraven

backpacks and Hydroflask water bottles to our participant pool of undergraduate students, we

expected these two objects to be the most popular, and strongly preferred to the other three

objects (a notebook, coffee mug, and pens). Indeed, 84% of the participants value the backpack

and water bottle as the two best goods, as measured by the Phase I elicitation. Table 1 in

the appendix shows that the average elicited values for the five objects used in the matching

mechanism were $28.24 (backpack), $22.56 (water bottle), $9.11 (notebook), $6.53 (mug) and

$5.33 (pens).

Given the preference assumption, for the theory, we focus on equilibria that have the fol-

lowing structure. For RSD: n1 of the agents rank x1 first and x2 second; the remaining n− n1
agents rank x2 first and x1 second; for the remaining goods x3, . . . , xn, each agent draws a

ranking of these goods uniformly at random from all possible rankings. For Boston: n1 agents

rank x1 first; the remaining n − n1 agents rank x2 first; for the remaining goods x3, . . . , xn,

as in RSD, each agent draws a ranking of these goods uniformly at random from all possible

rankings. They rank these goods immediately below their top choice, and rank the remaining

good that was not their top choice (either x1 or x2) at the bottom of their list.

In other words, in RSD, all agents rank x1 and x2 first and second, in some order. In

Boston, each agent ranks either x1 or x2 first, and puts the other option not chosen last in

their preferences. This is in line with our motivation that the main source of competition is

over goods x1 and x2. Thus, an agent’s strategy boils down to whether to rank x1 or x2 first,

and the key equilibrium object to solve for is the exact number of agents that choose to rank

x1 (the best object according to fundamental value) first in their reported preferences in RSD

versus Boston. As we show in the proof of Theorem 2, this number is uniquely determined for

each mechanism.14

Theorem 1. Suppose the preference assumption holds. If truth-telling with respect to the fun-

damental value is an equilibrium of the Boston mechanism, truth-telling is also an equilibrium

of RSD.

This theorem suggests that there should be more truth-telling in RSD compared to Boston.

Intuitively, truth-telling is an equilibrium of the Boston mechanism when the fundamental value

v1 is so high that it is worth it for every agent to enter the round 1 lottery for x1, rather than

deviating by ranking x2 first and receiving payoff v2 + ρ(1) for sure. In RSD, this deviation is

even less profitable, because it does not guarantee x2 with certainty (though it does guarantee

the deviating agent will not get x1). Thus, if the deviation is not profitable in Boston, it will

not be profitable in RSD, either, and so truth-telling with respect to fundamental values is an

equilibrium of both mechanisms.

Our experimental design allows us to measure each participant’s rankings with respect to

14There is one caveat to the strategies defined above, which is that if all agents rank x1 first in Boston (n1 = n),
then, given the preference assumption, it is optimal for everyone to rank x2 second, rather than last, in their
preference list. Essentially, this happens when v1 � v2 to the extent that it is worth it for every agent to enter the
round 1 lottery for x1, in which case x2 will still be available in round 2 of the mechanism, and Boston effectively
becomes equivalent to RSD. The theorems stated below still hold regardless. See the proofs in Appendix A for
details.
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fundamental value, because the fundamental values are elicited in Phase I. This gives our second

testable hypothesis.

Hypothesis 2. Participants will submit preferences in Phase II that are truthful with respect

to fundamental values as measured by the elicitation in Phase I weakly more in RSD than in

Boston.

Theorem 1 only discusses the truth-telling equilibrium. It may of course be that truth-telling

is not an equilibrium of either Boston or RSD: Once rankings-dependent utility is introduced,

even in RSD, an agent may want to deviate from truthful reporting in order to obtain the

additional rankings-dependent utility term ρ(1). Even in this case, however, we still expect

more agents to misreport by ranking x2 first in the Boston mechanism, for similar reasons as

for Theorem 1. This is formalized in the next theorem.

Theorem 2. Suppose the preference assumption holds. Then, in any equilibrium of RSD,

weakly more agents rank good x1 first in their preference list than in any equilibrium of Boston.

This theorem leads to our third hypothesis.

Hypothesis 3. In Phase II, weakly more participants will rank the good with the highest elicited

Phase I value first in their preference list in RSD than in Boston.

Welfare

Our final hypothesis concerns the overall welfare of the two mechanisms. Arguably, this is the

most important feature of any mechanism, because the ultimate goal of any allocation mecha-

nism is to produce an outcome that maximizes participant satisfaction, taking into account all

components of utility, including fundamental values and rankings-dependent components.

Theorem 3. Suppose the preference assumption holds. The equilibrium total welfare of the

Boston mechanism is weakly higher than the equilibrium total welfare of RSD.

The intuition for this result is that, given our preference assumption, the sum of the fun-

damental value components of total welfare is the same for any allocation. Thus, the welfare

comparison between any two mechanisms is determined by the sum of the rankings-dependent

utility terms:

W =
n∑
j=1

(# agents who receive their jth ranked good)× ρ(j)

In the Boston mechanism, in equilibrium, at least one agent ranks good x2 first and receives it

for sure, and so there are two agents who receive rankings-dependent utility ρ(1).15 In RSD,

even if some agents do rank x2 first, there is still a non-zero probability that the good will

go to an agent who ranked it second, and who thus will receiving rankings-dependent utility

15There is also the case that v1 is so high that all agents rank x1 first in Boston. However, in this case, all
agents will also rank x1 first in RSD (see Theorem 2) and the mechanisms become equivalent, so the welfare of
the two mechanisms will be the same.
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ρ(2) < ρ(1), resulting in lower total welfare for RSD. The full details of the argument can be

found in the appendix.

In the experiment, we measure the total welfare of a mechanism as the sum of the elicited

values for the mechanism allocation in Phase II. This gives our final hypothesis.

Hypothesis 4. The sum of the elicited values in Phase II will be weakly higher in Boston than

in RSD.

Each of the theorems and experimental hypotheses above compare RSD and Boston using

weak comparisons. For instance, they suggest that total welfare under Boston will be weakly

higher than under RSD. Although there are valuation vectors that make each comparison strict,

for others, the outcomes will be equal. A limitation of our experimental design is that we

cannot control the valuation vectors as is possible with an induced value design. For this

reason, we consider Hypothesis 1—the one that doesn’t rely on any such assumptions about the

v’s—as the primary point of interest. At the same time, we still think Theorems 1-3 and their

corresponding hypotheses are valuable for providing novel insights into the effects of rankings-

dependent preferences on incentives and welfare, and so include them in our results as well.

3.3 Procedures

All experiments were run at the University of Virginia VeconLab with undergraduate students

recruited from the Darden BRAD lab recruitment pool. There were a total of 200 participants,

100 for each of the two treatments in a between-subjects design. No feedback was provided

before the end of the experiment so each participant is treated as an independent observation

for the results. The experiment was programmed and run with z-Tree (Fischbacher, 2007).

For the participants who earned money the average earnings were $33.59. For the participants

who received goods, the average monetary values of these goods was $36.69.16 Additionally, all

participants received $6 for showing up.

4 Results

In this section, we turn to the data to analyze the extent to which our experimental results

provide support for our four hypotheses. For regressions we use stars to indicate significance at

the usual levels (∗ if p < .1, ∗∗ if p < .05, and ∗ ∗ ∗ if p < .01).

Hypothesis 1: Net Value

Recall that Hypothesis 1 argues that net value, the elicited value in Phase II minus the elicited

value in Phase I, will be decreasing in submitted rank j. As a first look, Figure 1 provides the

average net values for each rank for RSD, Boston, and both treatments.

For RSD, the results presented in Figure 1 are consistent with the hypothesis. Net value is

almost monotonically decreasing, with the exception of the 3rd and 4th rankings (n is only 13

for the latter case, as most people received one of their top 3 ranked goods). Indeed, a non-

parametric test rejects the null of no difference among the ranks in favor of the alternative that

16In total, 144 participants earned money and 56 participants received goods.
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Figure 1: Net Values with # of obs. on ends of bars

net value is decreasing in submitted rank (Jonckheere-Terpstra, p = 0.019). On the other hand

Figure 1 seems to show no relationship between net value and submitted rank in Boston, and

the non-parametric test does not reject the null in this case (Jonckheere-Terpstra, p = 0.618).

To explore these results in more detail, we turn to regression analysis. The regressions

are presented in Table 1. For each treatment, we first regress net value on submitted rank

alone (regressions (1) and (3)). We then add a number of potential influences on net value

including Phase I elicited value (initial value), Holt-Laury switching point (risk aversion), the

loss aversion task switching point (loss aversion), score out of three on the three cognitive

reflection tasks (CRT score), a dummy for gender (female), the randomly selected order in

which the good received in Phase II was valued in Phase I (Phase I order), the number of

submitted preference orders in the practice session against robots (practice), and a dummy for

whether the received good in Phase II was ranked higher than it would have been according to

the implied fundamental values elicited in Phase I (truthful). These regressions are reported

in columns (2) and (4), and the pooled regression with both treatments is presented in column

(5).
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Table 1: Net Value Regressions

Treatment RSD Boston All

(1) (2) (3) (4) (5)

rank -0.8795* -1.2358* 0.0979 -1.8063** -1.5526***

initial value -0.0570 -0.2768*** -0.1759***

risk aversion 0.0603 0.2676*** 0.1679***

loss aversion 0.0015 -0.1331 -0.0769

CRT score 0.0222 -0.5717 -0.3484

female -0.1220 -0.6279 -0.5844

Phase I order 0.1077 -0.1333 -0.0328

practice -0.1485 -0.2194 -0.1477

truthful -1.6938 -0.7317 -1.1834

cons 3.6033*** 4.5190 0.6334 10.4651** 8.1221**

No. of Obs. 100 100 100 100 200

R-Squared 0.03 0.11 0.00 0.27 0.16

In line with the non-parametric tests, Table 1 provides support for the hypothesis that net

value is decreasing in rank of received good for RSD. Net value decreases by $0.88 or $1.24 per

ranking depending on whether controls are included or not, and the estimates are marginally

significant. Surprisingly, in contrast to the non-parametric tests, Table 1 also provides support

for the hypothesis for Boston when controls are included. For Boston, net value decreases by

$1.81 per ranking when controls are included and the estimate is significant. Pooling the data,

there is a strongly significant decline of $1.55 per rank.

Additionally, in Boston, participants’ initial values negatively impact net value while risk

aversion positively impacts net value. The effect from initial value must be carefully evaluated,

because initial value is part of the net value. Observe that the estimate −0.2768 means that an

increase of $1.00 in initial value decreases net value by $0.28, but this can also be translated and

interpreted as an increase of $1.00 in initial value increases final value (the Phase II valuation)

by $0.72. Combined with the positive intercept in the regression, the estimates imply that

small initial values are increased and large initial values are decreased. One interpretation of

the result then is reversion to the mean; participants perhaps value objects with noise and so

low Phase I valuations are more likely to be increased while high Phase I valuations are more

likely to be decreased.17

The effect of risk aversion is harder to understand. As we will discuss in the next section,

risk aversion impacts truth-telling in Boston. Briefly, we show there that risk averse participants

are more likely to highly rank a good that they do not like as much but is less popular. Here,

this means that when they get this less popular good their net values increase. We are not as

confident as to why this may be the case, but one possibility is utility from the relief that they

do indeed obtain the good they moved up in their rankings.

Given the discrepancy between the raw data and the regression analysis (particularly with

17For example, a small initial value is more likely to come from a participant who under-valued the good in
Phase I relative to their true fundamental value and is therefore more likely to increase the valuation in Phase
II.
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the difficult to interpret positive effect of risk aversion in Boston), we think it is prudent to dive

a little deeper. As a check of robustness, we ran additional regressions with dummy variables for

final rank and for the good received. The first set of dummies allows for a non-linear relationship

between rank and net value, while the second allows for the possibility that there is something

inherent about the good itself. In order to not have too many regressors relative to data, we

only included the controls for initial value and risk aversion. The results are presented in Table

5 in the appendix.

These results show some similarities and some differences to Table 1. Most notably, the

support for the hypothesis goes away. In particular, in RSD, the estimates that are significant

are for receiving the highest-monetary goods, the backpack and the waterbottle.18 The results

for Boston indicate it is only initial value and risk aversion that matter. Putting them together,

there is no evidence in support of the hypothesis in Table 5. So is Table 1 or Table 5 correct?

Table 5 has higher values of R2, but we also do not want to say it is more correct than Table

1. Indeed, the reason we have it as a check of robustness is that there are two reasons to be

wary of the results in Table 5. First, the dummy variables reduce the power of the estimates for

the effects of rank (essentially only considering 20 data points at a time rather than the whole

set of 100). Indeed the estimates for ranks in Boston are negative indicating that rank does

decrease net value, just not significantly, which could be an issue of power. Second, there is

clearly high collinearity between the goods received, the initial value, and the final ranks. For

example, Table 1 indicates that getting your 1st ranked good is best for net value while Table

5 indicates that getting the backpack is best for net value. Of course, these two outcomes are

highly correlated (and backpacks also had the largest initial values so that is correlated as well).

This is the reason we omit the goods dummies in our main regressions reported in Table 1.

To conclude, we find mixed evidence for Hypothesis 1: the evidence seems stronger for RSD

than for Boston, which may indicate that the choice of mechanism may influence preference

formation in other more complex ways as well. This should be further explored in the future

with alternative experimental designs. Part of the ambiguity may be due to the use of real

goods, which may induce more noise in the data, making strong statistical inference more

difficult. This is a necessary trade-off to answer our question of interest, because real goods

allow us to directly identify rankings-dependence in ways that induced values would not.

Hypotheses 2 and 3: Truth-telling

We now move to assessing truth-telling (with respect to fundamental value) and Hypotheses 2

and 3. To assess Hypothesis 2, we begin with reporting the proportion of participants whose

submitted rankings list in Phase II is truthful with respect to the fundamental values elicited

in Phase I.19

When testing Hypothesis 2, we classify an agent as truth-telling only if all five goods were

ranked in the same order as the fundamental value elicited in Phase I. However, this could

be an overly restrictive definition of truth-telling, because the goods were intentionally chosen

18The mug is omitted. So the coefficients are interpreted with respect to the mug which has the smallest net
value.

19The preferences elicited in Phase I are not always strict, in which case listing the indifferent goods in any
order is classified as truthful.
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such that two of them (the backpack and water bottle) were likely to be much better than

the other three to most people. To the extent that the remaining three goods (notebook,

mug, pen) were viewed as significantly worse than the top two, and similar in value amongst

themselves, participants may have been more focused on the choice between the top two goods

and submitted “noisy” preferences over the remaining three goods. There also is likely to be

noise in the Phase I elicitation procedure itself, and since the notebook, mug, and pen were

similar (and lower) in value, this could be a cause of apparently non-truthful reporting over all

5 goods in Phase II.20

We deal with this issue in two ways. First, we also assess Hypothesis 3, which looks at the

number of agents who report their top good truthfully. Second, we consider submitted rankings

lists in Phase II that are truthful with respect to the fundamental values elicited in Phase I with

some noise. In particular, we chose an ad-hoc cutoff of $2 and classify preferences as truthful

as long as they do not rank a good in Phase II higher than another good with an elicited value

that is $2 more. All the proportions are presented in Table 2.

Table 2: Truth-telling Rates

Measure RSD Boston All

Exact

All 0.40 0.37 0.39

Top Choice 0.78 0.79 0.79

Top 2 Choices 0.60 0.60 0.60

Up to $2 differences

All 0.58 0.53 0.56

Top Choice 0.82 0.83 0.83

Top 2 Choices 0.70 0.67 0.69

Of course, as the leniency allowed in truthful reporting increases, the proportions of truthful

reporting increases. But the main result, regardless of how truth-telling is measured, is that

there are no differences in truthful reporting between the two treatments. The non-parametric

Wilcoxon ranksum test confirms this impression for all 6 pairwise comparisons between the

treatments. We find no support that Hypotheses 2 and 3 hold strictly. We also find it interesting

that even in the most lenient case, about 20% of participants are putting a good at the top of

their submitted list that they valued more than $2 less than their top-value good.

To provide a clearer picture of what impacts truth-telling, we ran probit regressions with a

dependent variable equal to 1 for participants who chose the truth and the independent variables

risk aversion, loss aversion, CRT score, female, and practice (all measured the same as in the

net value regressions). We report the results for the case where truth-telling is measured as

the top 2 choices in the main text, because we think that misstating the bottom 3 goods is

mostly noise and it is exactly these two goods for which there is an incentive to misrepresent

one’s preferences in the Boston mechanism. The other two measures are presented in Tables 6

and 7 in the Appendix where we find estimate values are quite similar although the levels of

significance vary somewhat.

20Indeed, the interpretation of the initial value coefficient in Table 1 suggests that this is the case.
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Table 3: Truth-telling Top 2 Choices Regressions

Treatment RSD Boston All

(1) (2) (3) (4) (5) (6)

risk aversion -0.0160 -0.0117 -0.0255* -0.0196 -0.0183* -0.0147

loss aversion 0.0051 -0.0053 -0.0060 -0.0013 -0.0004 -0.0029

CRT score 0.2477* 0.2093 0.1546 0.0880 0.2011** 0.1544

female 0.5353 0.3808 0.5626** 0.4994* 0.5189** 0.4426**

practice -0.0135 -0.0166 0.0369 0.0255 0.0094 0.0034

cons -0.1425 0.5057 0.3021 0.4284 0.0348 0.4137

Measure Exact $2 diff. Exact $2 diff. Exact $2 diff.

No. of Obs. 100 100 100 100 200 200

The regressions indicate that while truth-telling rates are similar across the two treatments,

this may be due to different reasons. The estimate for CRT score is positive and marginally

significant in RSD (with the exact measure, regression (1)) indicating that deeper-thinking

participants tell the truth more often. So perhaps the non truth-telling in RSD is due to

mistakes made by participants with low CRT scores rather than driven by rankings-dependent

utility. The estimate for risk aversion is negative and marginally significant in Boston (with

the exact measure, regression (3)) indicating that risk averse participants are less likely to tell

the truth, which is line with a model of standard preferences. Finally, the estimate for female

is positive and significant in Boston which is consistent with the finding that females are more

averse to lying (Dreber and Johannesson, 2008; Erat and Gneezy, 2012).

Hypothesis 4: Welfare

Finally, we address Hypothesis 4 and welfare. Table 4 presents the results for welfare measured

as the sum of participants elicited Phase II values for the goods they received in the matching

mechanism.

Table 4: Welfare

RSD Boston All

90.29 89.97 90.13

As is clear in the table, there is no difference between the two treatments. This is confirmed

with the Wilcoxon rank sum non-parametric test.21

5 Conclusion

We investigate whether agent preferences over goods received via a matching market are in-

fluenced by how highly they ranked the object in their reported preference list. We design a

laboratory experiment to test whether agents value a good more the higher that they rank it. A

21It may also be argued that rankings-dependent utility is a “bias” that should not be included in the final
welfare comparisons (we thank an anonymous referee for pointing this out). In this case, a better measure of
welfare would be the sum of the Phase I valuations. Under this measure, the average welfare is 82.25 for RSD
and 85.75 for Boston. So, there is slightly higher welfare for Boston, but the difference is not significant.
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novel feature of our experiment is that we use real goods, rather than induced values. This more

faithfully simulates real-world settings in which participants must form their own values over

their potential outcomes, and allows us to directly measure for rankings-dependent utility by

eliciting values for objects both inside and outside of the mechanism and taking the difference.

We find mixed evidence to support the hypothesis that valuations are influenced by reported

rankings, with a clearer effect seen for RSD than for Boston. We also find much lower rates of

truth-telling in RSD than previous matching experiments that use induced values designs, which

is consistent with preferences being rankings-dependent. While we do not claim a “slam-dunk”

for the hypothesis of rankings dependence, given their potential implications, we think the

results of our real-goods experiment warrant further study of the issue of preference formation

in matching mechanisms, which has been largely ignored in the (vast) matching literature thus

far. This will probably require the use of more real-goods experimental designs as opposed

to induced values. While induced values have the advantage of giving the experimenter more

control, by construction, they are unable to say anything about preference formation. Using real

goods will induce new challenges in experimental design, but with a significant benefit of more

closely replicating and understanding the challenges faced by people in real-world matching

markets.
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A Proofs of Theorems

Proof of Theorem 1. By supposition of the theorem, assume that truth-telling is an equilib-

rium of the Boston mechanism. We will show that truth-telling is also an equilibrium of RSD

by showing that if all j 6= i report truthfully, then i’s best response is also to report truthfully.

Let all agents other than j 6= i report a preference ranking that respects the fundamental

values, Pj : x1, . . . , xn. Fixing these reports for j 6= i, let i’s expected utility from any report P ′i
be EUSD(P ′i ). If i also reports a ranking that respects the fundamental values, Pi : x1, . . . , xn,

this becomes

EUSDi (Pi) =
1

n

n∑
j=1

ui(xj , Pi) =
1

n

n∑
j=1

(vj + ρ(j)). (3)

Consider any alternative report for i, P ′i 6= Pi. Let k′ be the lowest index such that object xk′

is not ranked in the k′-th position, and let xk∗ be the object that is ranked k′-th, where by

definition, k∗ > k′. Notice that such a k∗ exists, as otherwise P ′i = Pi. Under P ′i , agent i will

never receive any object xk′ , . . . , xk∗−1. To see this, let ` be i’s (randomly drawn) order in the

serial dictatorship. If ` < k′, then i will receive object x`; if k′ ≤ ` ≤ k∗, object xk∗ is still

available when it is i’s turn to choose, and thus i receives object k∗; if ` > k∗, then at i’s turn,

all objects x1, . . . , xk∗ have been taken by earlier agents, and thus i receives some object from

the set xk∗+1, . . . , xn. This implies that i’s utiliy from reporting P ′i is bounded above by

EUSD(P ′i ) ≤
1

n

k′−1∑
j=1

(vj + ρ(j)) +
n− k′ + 1

n
(vk∗ + ρ(k′)) (4)

Now, consider the Boston mechanism, and the same report P ′i from above (continuing to assume

that all other agents report truthfully in Boston). If i reports P ′i in the Boston mechanism,

then her expected utility is

EUB(P ′i ) =
1

n

k′−1∑
j=1

(vj + ρ(j)) +
n− k′ + 1

n
(vk∗) + ρ(k′)) (5)

This is because, in Boston, if i is not assigned in one of the first k′ − 1 rounds, she is assigned

to xk∗ in round k′ with certainty. In this case, she has ranked this object k′-th, so her total

utility is the term in parentheses at the end of equation (5). This event occurs with probability

(n− k′ + 1)/n.

Notice that if i reports truthfully with respect to fundamental values in Boston, her payoff

is

EUBi (Pi) =
1

n

n∑
j=1

(vj + ρ(j)), (6)

which is equivalent to the payoff from reporting Pi in SD; see equation (3). Finally, we have

the following:

EUSD(P ′i ) ≤ EUB(P ′i ) ≤ EUB(Pi) = EUSD(Pi) (7)
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where the first inequality follows from equations (4) and (5), the second from the fact that

truth-telling is assumed to be an equilibrium of Boston, and the last equality from equations

(3) and (6). Equation (7) implies EUSD(P ′i ) ≤ EUSD(Pi), i.e., truth-telling is optimal in SD.

�

Proof of Theorem 2. First, consider Boston, and let nB1 be the number of agents who rank

x1 first. It is trivial to see that nB1 = 0 is never an equilibrium, because if no agent is ranking

x1 first, then any agent can deviate to a strategy that does so and receive payoff v1 + ρ(1) for

sure, which is the highest possible attainable payoff.

Next, consider the case that nB1 = n is an equilibrium of the Boston mechanism, i.e., all

agents rank x1 first. In this case, each agent will also rank x2 second (see footnote 14), and

so receives x1 with probability 1/n and x2 with probability 1/n, for an equilibrium utility of

(1/n)×(v1 +ρ(1))+1/n×(v2 +ρ(2))+((n−2)/n)×(v̄+ ρ̄), where ρ̄ = 1
n−2

∑n
j=3 ρ(j). The last

term, v̄+ ρ̄, comes from the fact that for all agents not assigned in rounds 1 or 2, the assignment

is just a random assignment of goods x3, . . . , xn, and so by symmetry, any individual agent’s

payoff is just the average, v̄+ ρ̄; this event happens with probability (n−2)/n. If any individual

agent deviates to ranking x2 first, she gets it for sure, with resulting utility v2 +ρ(1). Since this

is an equilibrium, we conclude that (1/n)×(v1+ρ(1))+1/n×(v2+ρ(2))+((n−2)/n)×(v̄+ ρ̄) ≥
v2 + ρ(1). Note also if nB1 = n is an equilibrium, then it is the unique equilibrium. This follows

because if there were some other equilibrium in which nB1 < n, then some agent i is not ranking

x1 first. Agent i will therefore never receive x1, and so her payoff is bounded above by by

v2 + ρ(1). If she deviates to ranking x1 first and x2 second, then her payoff is bounded below

by (1/n)× (v1 + ρ(1)) + 1/n× (v2 + ρ(2)) + ((n− 2)/n)× (v̄+ ρ̄). As was just shown, the latter

is greater than the former, and so this deviation is profitable.

Now, consider SD. If all n agents rank x1 first and x2 second, then they once again receive

payoff (1/n)× (v1 + ρ(1)) + 1/n× (v2 + ρ(2)) + ((n− 2)/n)× (v̄ + ρ̄). If any agent deviates to

ranking anything other than x1 first,22 they will never receive x1, and so their payoff is bounded

above by v2 + ρ(1), which, from the above calculation for Boston, is smaller than the expected

payoff from ranking x1 first and x2 second. Thus, nSD1 = n is also an equilibrium of SD. Similar

arguments as for the Boston case above show that this equilibrium is once again unique, and

so nSD1 ≥ nB1 , as required.

So, for the remainder of the proof, we restrict to 0 < n1 < n. Let UB(xj , n1) be the expected

utility of an agent who ranks good xj first when n1 total agents (including this agent) rank x1

first, and the remaining n− n1 total agents rank x2 first. Then, we can calculate:

UB(x1, n1) =
1

n1
(v1 + ρ(1)) +

n1 − 1

n1
δ

UB(x2, n1) =
1

n− n1
(v2 + ρ(1)) +

n− n1 − 1

n− n1
δ

where δ = v̄+ (ρ(2) + ρ(3) + . . .+ ρ(n− 1))/(n− 2).23 The equations derive from the fact that

22This follows because if the agent is chosen first in the RSD ordering, she receives her first-ranked object
which is different from x1, while if she is not chosen first, then whoever is chosen first takes x1.

23This is slightly different than v̄+ ρ̄ calculated above for the n1 = n case, because here, agents begin ranking
goods x3, . . . , xn second in their list, and so the summation of the rankings-dependent utility terms run from
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if an agent ranks x1 first in Boston, she has a 1/n1 chance of getting x1. If she does not, good

x2 will not be available in round 2, and so she will get some good x3, . . . , xn. There will always

be exactly n − 2 agents left after round 1 of the mechanism, and since all agents rank goods

x3, . . . , xn the same, this becomes a random allocation of the remaining objects. The δ terms

represent the total expected utility from this random allocation. Let

∆B
x1→x2(n1) = UB(x1, n1)− UB(x2, n1 − 1)

be the change in utility for an agent whose equilibrium strategy is to rank x1 first, and who

deviates to ranking x2 first. Similarly, let

∆B
x2→x1(n1) = UB(x2, n1)− UB(x1, n1 + 1)

be the expected change for an agent whose equilibrium strategy is to rank x2 first, but who

deviates to ranking x1 first.

For nB1 to be an equilibrium, we need both ∆B
x1→x2(nB1 ) ≥ 0 and ∆B

x2→x1(nB1 ) ≥ 0, i.e., no

agent has a profitable deviation. Algebra shows that these two equations reduce to

nB1 ∈
[

n(v1 + ρ(1)− δ)
v1 + v2 + 2(ρ(1)− δ)

− v2 + ρ(1)− δ
v1 + v2 + 2(ρ(1)− δ)

,
n(v1 + ρ(1)− δ)

v1 + v2 + 2(ρ(1)− δ)
+

v1 + ρ(1)− δ
v1 + v2 + 2(ρ(1)− δ)

]
.

(8)

Subtracting the left endpoint from the right endpoint gives a range of length exactly 1. So,

there will be a unique integer nB1 in this range, which corresponds to the unique equilibrium

number of agents who rank x1 first in Boston.

Let nSD1 be the equilibrium number of agents who rank x1 first in SD. We will show that

nSD1 ≥ nB1 . For SD, the analogous equations to the above are:

USD(x1, n1) =
1

n
(v1 + ρ(1)) +

1

n

(
n1 − 1

n− 1
(v2 + ρ(2)) +

n− n1
n− 1

(v1 + ρ(1))

)
+
n− 2

n
δ′

USD(x2, n1) =
1

n
(v2 + ρ(1)) +

1

n

(
n1
n− 1

(v2 + ρ(1)) +
n− n1 − 1

n− 1
(v1 + ρ(2))

)
+
n− 2

n
δ′

In each equation above, there is a 1/n chance that the agent is ordered first, in which case

she gets her first ranked good. If not, there is a 1/n chance she is ordered second. In the top

equation, there is an (n1 − 1)/(n − 1) chance the first agent was one of the remaining agents

who ranked x1 first, in which case agent i receives x2, and a n2/(n − 1) chance the first agent

was one of the agents who ranked x2 first, in which case i gets x1 again. If i is ordered third

or higher in the SD ordering, then both goods x1 and x2 are gone at her turn, and, as for the

Boston case above, i’s utility in this case is that from a random assignment of the remaining

goods, represented by δ′ = v̄ + ρ̄.24

Define ∆SD
x1→x2(n1) and ∆SD

x2→x1(n1) analogously to the above, except replacing SD for

j = 2 to n− 1; they will never receive their nth ranked object, which is the object among {x1, x2} that they did
not rank first.

24The term δ′ here is slightly different from the δ term in the Boston equations above, because in RSD, agents
rank x1 and x2 first and second, in some order, while in Boston, one of x1 or x2 is ranked last. However, for
RSD, the δ′ terms are less important, because they will cancel out when checking for profitable deviations below.
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Boston. Similarly as for Boston, for nSD1 to be an equilibrium, we need ∆SD
x1→x2(nSD1 ),∆SD

x2→x1(nSD1 ) ≥
0. Algebra shows that these equations reduce to

nSD1 ∈
[
α+

1

2
, α− 1

2

]
(9)

where α = n
2 + (n−1)

2
v1−v2

ρ(1)−ρ(2) . Once again, this range has total length 1, and so there is a unique

equilibrium number of agents nSD1 that rank x1 first.

What remains to check is that nSD1 ≥ nB1 . To show this, note first that the lower bounds

in equations (8) and (9) are determined by the equations ∆B
x2→x1(n1) ≥ 0 and ∆SD

x2→x1(n1) ≥ 0

that ensure that those who rank x2 first do not want to deviate to ranking x1. Next, notice

that
d∆SD

x2→x1(n1)

dn1
=

2(ρ(1)− ρ(2))

n(n− 1)
> 0,

which implies that ∆SD
x2→x1(n1) is an increasing function. Now, evaluate ∆SD

x2→x1(n1) at ξ =
n(v1+ρ(1)−δ)

v1+v2+2(ρ(1)−δ) −
v2+ρ(1)−δ

v1+v2+2(ρ(1)−δ) , which is the lower bound of equation (8):

∆SD
x2→x1 (ξ) = −(v1 − v2)((n− 3)ρ(1) + (n+ 1)ρ(2) + (n− 1)(v1 + v2)− 2(n− 1)δ)

n(n− 1)(v1 + v2 + 2ρ(1)− 2δ)

Now, since v̄ < v2 and ρ(j) is a decreasing function, we have

δ = v̄ +
1

n− 2

n−1∑
j=2

ρ(j) < v2 + ρ(2)

It is then simple to check that both the numerator and denominator of the above equation are

positive, which implies that ∆SD
x2→x1 (ξ) < 0. Because the function is increasing, the crossover

point that defines the lower bound of equation (9) must lie to the right of ξ. Thus, the range of

equation (9) must be to the right of the range of equation (8) (they may overlap), which implies

that nSD1 ≥ nB1 . �

Proof of Theorem 3. The overall welfare from any mechanism is just the sum total of

the utilities. Recall that an agent’s utility is the sum of the fundamental value of the object she

receives, vj , and a rankings-dependent component: ui(x, Pi) = vi(x)+ρ(j). Because vi(xj) = vj

for all i, the sum of the fundamental values will be the same for any assignment. This means

that the overall welfare of any mechanism ψ is determined by the sum of the rankings-dependent

utility components:

Wψ =
n∑
j=1

(# agents who receive their jth ranked good)× ρ(j)

There are two cases. First, if nB1 = n—that is, all agents choose to rank x1 first in the Boston

mechanism—then, by Theorem 2, nSD1 = n as well. The two mechanisms are then equivalent,

and so WB = WSD.

Second, assume that 1 ≤ nB1 < n (recall that Theorem 2 shows that nB1 = 0 is never an
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equilibrium of Boston). For Boston, we have

WB = 2ρ(1) +
n−1∑
j=2

ρ(j).

The first term, 2ρ(1) comes from the fact that at least one agent is ranking x1 first and at

least one agent is ranking x2 first, and so both of these agents are receiving their top-ranked

object. Then, all remaining agents rank the remaining goods uniformly at random, and so, by

symmetry, they are equally likely to get any of these goods. Notice that the summation starts

at 2, because they place the good from {x1, x2} that was not their top choice at the bottom of

their rankings (and will never receive it).

For SD, the equation is

WSD =
nSD1
n

nSD1 − 1

n− 1
(ρ(1) + ρ(2)) + 2× nSD1

n

n− nSD1
n− 1

(ρ(1) + ρ(1))

+
n− nSD1

n

n− nSD1 − 1

n− 1
(ρ(1) + ρ(2)) +

n∑
j=3

ρ(j) (10)

The first three terms derive from the probability that the first two agents are “x1Pix2”

agents or “x2Pix1” agents. For instance, for the first term, there is an nSD1 /n chance that the

first agent in the order ranks x1Pix2 and, conditional on this, a (nSD1 − 1)/(n− 1) chance that

the second agent has the same ranking. In this case, x1 goes to an agent who ranked it first

and x2 goes to an agent who ranked it second, so the rankings-dependent component of welfare

is ρ(1) + ρ(2). The next two terms are calculated similarly, for all possible combinations of the

preferences of the first two agents. Finally, the summation term at the end comes from the

fact that all remaining agents rank x3, . . . , xn uniformly randomly, and so by symmetry, are

equally likely to get any rank. Note that, unlike in Boston, the summation runs from j = 3 to

n, because all agents rank x1 and x2 first in SD.

Now, notice that

WSD ≤ nSD1
n

nSD1 − 1

n− 1
(2ρ(1)) + 2× nSD1

n

n− nSD1
n− 1

(2ρ(1)) +
n− nSD1

n

n− nSD1 − 1

n− 1
(2ρ(1)) +

n∑
j=3

ρ(j)

= 2ρ(1)

(
nSD1
n

nSD1 − 1

n− 1
+ 2× nSD1

n

n− nSD1
n− 1

+
n− nSD1

n

n− nSD1 − 1

n− 1

)
+

n∑
j=3

ρ(j)

= 2ρ(1) +
n∑
j=3

ρ(j)

≤WB

where the first line replaces ρ(2) with ρ(1) ≥ ρ(2), the second factors out the 2ρ(1) terms, the

third follows because the term in parentheses sums to 1, and the last follows from ρ(j) being a

decreasing function. �
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B Robustness Regressions

Table 5: Net Value Regressions with Dummies

Treatment SD Boston All

(1) (2) (3)

ranked 2nd 1.0655 -0.6298 1.2793

ranked 3rd 0.3480 -1.8964 -0.4721

ranked 4th 0.3046 -0.6471 0.4093

ranked 5th -1.0711 -4.5459 -3.0656

backpack 10.3001*** 5.4340 8.1776***

notebook 2.6014 -2.4099 -0.0261

waterbottle 7.5522*** 4.2488 6.3798***

pens 1.7752 -4.0435* -1.2110

initial value -0.2130*** -0.4093*** -0.3186***

risk aversion 0.0654 0.1927** 0.1436***

cons -1.6011 2.3024 -0.3960

No. of Obs. 100 100 200

R-Squared 0.25 0.31 0.23

Table 6: Truth-telling All Choices Regressions

Treatment RSD Boston All

(1) (2) (3) (4) (5) (6)

risk aversion -0.0224 -0.0142 -0.0211 -0.0270* -0.0165 -0.0177*

loss aversion 0.0000 -0.0057 -0.0224 -0.0042 -0.0110 -0.0046

CRT score 0.1794 0.1956 0.2118 0.2475* 0.1863* 0.2250**

female 0.5718* 0.2012 0.4025 0.4182 0.4065* 0.3214

practice -0.0701** -0.0507* 0.0481* 0.0282 -0.0024 -0.0105

cons 0.1589 0.6542 -0.0824 0.0730 -0.0909 0.2440

Measure Exact $2 diff. Exact $2 diff. Exact $2 diff.

No. of Obs. 100 100 100 100 200 200

Table 7: Truth-telling Top Choice Regressions

Treatment RSD Boston All

(1) (2) (3) (4) (5) (6)

risk aversion -0.0054 -0.0087 -0.0310* -0.0225 -0.0150 -0.0138

loss aversion 0.0076 0.0034 -0.0060 -0.0047 0.0004 -0.0008

CRT score 0.2041 0.1716 0.0538 0.0787 0.1151 0.1197

female 0.4395 0.3006 -0.0074 0.0962 0.1824 0.1757

practice -0.0201 -0.0226 -0.0021 -0.0043 -0.0154 -0.0157

cons 0.1928 0.7298 1.8629** 1.6134** 1.0138** 1.1603**

Measure Exact $2 diff. Exact $2 diff. Exact $2 diff.

No. of Obs. 100 100 100 100 200 200

31



C Phase I goods

Table 1: Phase I goods

Good Description Amazon Price Avg. Elic. Val.

Backpack Fjallraven gray, 16L backpack $66.95 $28.24
Alarm clock Aisuo bluetooth alarm/speaker/nightlight $37.99 $19.46
Water bottle Hydroflask blue, 32 oz. water bottle $32.96 $22.56
Shower speaker Donerton bluetooth waterproof speaker $29.99 $18.75
Laptop stand Ergonomic universal laptop stand $26.99 $15.99
Outdoor blanket Bearz blue waterproof blanket $24.99 $14.04
Cold brewer Takeya 1 qt. carafe $21.00 $15.04
Picture frames Set of 4 white, wooden frames $20.99 $9.99
Popcorn set 3 bags of popcorn plus flavors $22.00 $8.72
Notebook Moleskine 192 age, black notebook $21.90 $9.11
Tile Bluetooth chip to track item on phone $19.99 $14.98
Phone mount Gooseneck phone holder with bracket $19.79 $8.87
Popcorn popper Silicone microwaveable popcorn maker $14.99 $7.49
Charging pad Anker phone-charging pad $13.99 $14.57
Frisbee Discraft yellow 175 g. Frisbee $13.76 $6.60
Mug Blue ceramic mug $11.99 $6.53
Playing cards Deck of black playing cards $7.99 $4.93
Pens Set of 4 Uni-ball rollerball pens $6.88 $5.33
Keychain tool Multi-tool that attaches to keys $6.64 $5.11
Cable spirals Set of 24 plastic, multicolor cable-protectors $6.29 $5.03
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D Instructions and Screen Shots

Welcome and Phase I

Welcome. This is an experiment in decision making. Various research foundations and institu-

tions have provided funding for this experiment and you will have the opportunity to make a

considerable amount of money which will be paid to you at the end. Make sure you pay close

attention to the instructions because the choices you make will influence the amount of money

you will take home with you today. Please ask questions if any instructions are unclear.

Terminology: In the following instructions, we will say that the computer will make a

random choice from a number of possibilities. This means that the computer will randomly

select one of the possibilities with equal chance for each. If there are N possibilities, you can

think of this as the computer rolling a die that has N sides, and choosing the possibility that

comes up on the die.

This experiment will consist of two phases. We will hand out the instructions for each phase

before you complete the phase. You will be paid for your choices in only one of the two phases

which will be randomly selected by the computer. Your choices in each phase have no impact

on later phases.

Your earnings may be an object or money, and at the end of the experiment, we will give

you the object or the money to take home. You will see pictures of the object on your screen,

but we have the actual objects here with us. If you want us to show you the actual object at any

time, just raise your hand and we can bring it over. Everyone will also get $6 for participating.

Phase I

For this phase, you will be allocated an object that will be shown to you on your screen.

Remember that we have the actual objects with us, so feel free to raise your hand if you would

like us to bring one over for closer inspection.

The Task

After you are allocated your object, you will have the opportunity to give up the object in

exchange for a certain amount of money. Whether you keep the object or receive money will

be determined as follows:

First, you will see a screen with 50 rows. Each row is a choice between keeping the object

or exchanging it for $1, $2, . . . , up to $50 . As we will explain carefully in the earnings section

of the instructions below, if a row is selected for your earnings, you will take home the choice

(object or money) that you selected in that row. Because it is time-consuming to have you

click a button for every row, instead you only need to click on the bullet for the object in

the last row where you would keep the object over the specified number of dollars.

Because all rows above the one you select offer less money, we will fill in all of these rows with

you selecting to keep the object. Similarly, because all rows below offer more money, we will fill

in all of these rows with you selecting the money. After you click, you can change your mind

by clicking on a different row and that row will become the last row where you keep the object.

Click confirm when you have finalized your choice.

Next, you will see another screen with 50 rows. Each row is a choice between keeping the

object or exchanging it for $x.02, $x.04, up to $x+1 where x is the dollar amount in the row
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you selected on the first screen. As for the first screen, you make just one choice. Click on

the bullet for the object in the last row where you would keep the object over the

specified number of dollars. As on the first screen, because all rows above have less money,

we will automatically fill in all of these rows with you selecting the object over the money.

Because all rows below contain more money, we will automatically fill in all these rows with you

selecting the money over the object. After you click, you can change your mind by clicking on

a different row and that row will become the last row where you keep the object. Click confirm

when you have finalized your choice.

Procedures

You will do this task for 20 objects. After you complete the task for the 20 objects, we will

ask you to complete 2 additional tasks unrelated to this task for a total of 22 tasks in Phase I.

The instructions for those tasks will be presented on the screen when you do them. Finally, we

will have you answer a short questionnaire.

Earnings

If this phase is selected for earnings, the computer will first randomly select 1 of the 22

tasks and you will receive earnings for that task. If the selection is one of the 20 tasks described

above, your earnings will be determined as follows. The computer will randomly select one of

the 50 rows from the first screen. We will then implement your choice from that row.

That is, you will get the object to take home with you if you selected to keep the

object in this row, or the amount of money if you selected the money.

There is one exception: If the randomly selected row from the first screen is the last row

where you would keep the object, the computer will randomly select one of the 50 rows from

the second screen and we will then implement your choice from that row. Keep in mind

that any row from any task could be selected so it is in your best interest to select the object

when you prefer the object to the money and to select the money when you prefer the money

to the object.

For the 2 additional tasks, how your earnings would be determined if the computer selected

one of them will be explained to you when you complete those tasks .
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Phase II: RSD

Phase II

For this phase, you will be divided into groups of 5 people, and for each group there will be

5 objects. Each member of the group will end up with exactly one of the objects. The object

you get will be determined by your preferences for the objects, along with the preferences of

your group members. Each group member will provide a preference ranking of the objects.

Because there is only one of each object available, if multiple people list a particular object

first, we will use a random tie-breaking procedure to determine who gets what. The details of

how this is done are described below.

The Task

You will first be shown the 5 objects. Your task for this phase is to submit a list ranking

the objects from most-preferred to least-preferred. After collecting everyone’s rankings,

the computer will randomly select a picking ordering of the 5 group members. The computer

will then allocate an object to each group member as follows.

• The group member who is randomly chosen to go first will be allocated the first object

on their submitted list.

• The group member who is randomly chosen to go second will be allocated the highest-

ranked object on their list that was not taken by the first group member.

• The group member who is randomly chosen to go third will be allocated the highest-ranked

object on their list that was not taken by the first or second group member.

• The group member who is randomly chosen to go fourth will be allocated the highest-

ranked object on their list that was not taken by the first, second, or third group member.

• The group member who is randomly chosen to go fifth will be allocated the highest-ranked

object on their list that was not taken by the first, second, third, or fourth group member.

It is up to you how to rank the objects. Given the rules of the procedure, there is no way

to manipulate your rankings to obtain an object that is ranked higher than the one you would

have ended up with if you had just ranked the objects in the order you prefer them. This is

because your ranking list does not affect what objects will be available when it is your turn in

the picking order to receive an object, and when your turn arrives, the computer will give you

the object you have ranked highest among those that are still available.

Example:

Let’s go through an example. For our example we will use four objects that are not used in

the experiment and a group of four people to make it simpler to understand and ensure we are

making no suggestions about how you should rank the objects in the experiment. The example

is purely to help you understand the procedure the computer will use.

We will use the names Ann, Bob, Carol, and Dave. The items are a Pizza, Chips, Soda, and

Pretzels. Suppose our group members submit the following rankings:
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Ann Bob Carol Dave

1st choice Chips Pizza Pizza Pretzels

2nd choice Pizza Chips Pretzels Soda

3rd choice Soda Soda Chips Chips

4th choice Pretzels Pretzels Soda Pizza

After submitting their rankings, the computer randomly determines a picking ordering of

the group members. Say that the computer randomly orders Ann, Bob, Carol, and Dave as

follows:

1st Bob

2nd Carol

3rd Dave

4th Ann

The computer then determines the allocations using this ordering and the preferences of

each group members using the following procedure

1. Bob was ordered first. His top-ranked object is the Pizza. Thus, he is given the Pizza.

This indicated in bold in the table.

Bob

1st choice Pizza

2nd choice Chips

3rd choice Soda

4th choice Pretzels

2. Carol was ordered next. The Pizza is gone, so the objects that remain are the Soda, the

Chips, and the Pretzels. According to Carol’s list, her top choice of these is the Pretzels,

so Carol is given the Pretzels.

Carol

1st choice Pizza

2nd choice Pretzels

3rd choice Chips

4th choice Soda

3. Dave was ordered third. The Pizza and the Pretzels are gone, so the objects that remain

are the Soda and the Chips. According to Dave’s list, his top choice between the Soda

and the Chips is the Soda, so he is given the Soda.

Dave

1st choice Pretzels

2nd choice Soda

3rd choice Chips

4th choice Pizza
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4. Ann is ordered last. The Pizza, Pretzels, and Soda are gone, so Ann receives the Chips.

Ann

1st choice Chips

2nd choice Pizza

3rd choice Soda

4th choice Pretzels

Procedures:

During the procedure, all you must do is submit one list ranking all of the objects.

Note that you will not know your place in the picking order when you submit your rankings.

The computer will take everyone’s list and then determine the picking order. The picking order

is entirely random, and is not influenced by the list you submit. As described above, when your

turn comes, the computer will consider all of the objects that are still left, and give you the one

that you ranked the highest.

After you are allocated your object, we will ask whether you want to keep the object

or exchange it for various amounts of money using the exact same procedures as

in Phase I.

Earnings:

If this phase is selected for payment the computer will randomly select rows just as in Phase

I to determine if you will keep the object allocated to you by the procedure or the amount of

money.

Practice:

We will now hand out a worksheet with another example of the procedure. Please work

through the worksheet and raise your hand when you are finished. We will come over and check

your work and help you if there are any mistakes.

Then, there will be an 8 minute practice period on the computer. The practice period will

allow you to practice allocating 5 objects to 5 people. You can submit a ranking list and the

computer has robots who submit the other 4 ranking lists. While you will not know the random

ordering in the actual procedure when you submit your rank list, this practice will allow you to

simulate what you would have gotten if you had submitted different lists. You can experiment

with different rank lists as many times as you like for the randomly selected picking order. You

can also generate a new random picking order, and experiment further.

For the practice round, we recommend that you first think about the order in which you

would actually prefer the objects, and take note of the outcome you get for each possible list

you try.

We are doing this practice because you will only submit your ranking list once for the actual

experiment and we want to make sure everyone fully understands the procedure before we

continue to the actual experiment. You do not earn anything for the practice.

37



Phase II: Boston

Phase II

For this phase, you will be divided into groups of 5 people, and for each group there will be

5 objects. Each member of the group will end up with exactly one of the objects. The object

you get will be determined by your preferences for the object, along with the preference of

your group members. Each group member will provide a preference ranking of the objects.

Because there is only one of each object available, if multiple people list a particular object

first, we will use a random tie-breaking procedure to determine who gets what. The details of

how this is done are described below.

The Task

You will first be shown the 5 objects. Your task for this phase is to submit a list ranking

the objects from most-preferred to least-preferred.

After collecting everyone’s rankings, the computer will randomly assign each group member

a number from 1 to 5 that will be used to break ties. Every group member will be assigned a

different number. The computer will then allocate an object to each group member in rounds

as follows.

• In the first round, the computer looks at everyone’s first choices.

– If only one person has an object as their first choice, that person is allocated the

object.

– If more than one person lists an object as their first choice, then the computer will

give the object to the person who was assigned the lowest number 1-5.

• In the second round, only people who did not receive anything in the first round par-

ticipate. In the second round, the computer looks at everyone’s second choices.

– If only one person has an object as their second choice, then that person is allocated

the object.

– If more than one person has an object as their second choice, then the computer will

give the object to the person who was assigned the lowest number 1-5.

The procedure continues in rounds in the same manner, considering only agents who

remain and their third choices in round 3, fourth choices in round 4, etc., until everyone

is assigned an object.

It is up to you how to rank the objects. The random numbers 1-5 are not assigned until

after everyone submits their rankings. They will only be used if the computer needs to break

ties.

Example:

Let’s go through an example. For our example we will use four objects that are not used

in the experiment to make it simpler to understand and ensure we are making no suggestions

about how you should rank the objects in the experiment. The example is purely to help you

understand the procedure the computer will use.

38



We will use the names Ann, Bob, Carol, and Dave. The items are a Pizza, Chips, Soda, and

Pretzels. Suppose our group members submit the following rankings:

Ann Bob Carol Dave

1st choice Pizza Pizza Pizza Pretzels

2nd choice Pretzels Chips Chips Soda

3rd choice Chips Soda Pretzels Chips

4th choice Soda Pretzels Soda Pizza

After collecting the rankings, the computer randomly assigns each group member a number,

in this case 1 to 4 because there are 4 group members. Say that this random assignment resulted

in the following:

Name Random Number

Ann 2

Bob 1

Carol 3

Dave 4

Round 1

• The computer considers the first choice of every group member (indicated in gray in the

table below).

• Only Dave has the pretzels as his first choice, so Dave gets the pretzels.

• Ann, Bob, and Carol have the pizza as their first choice.

• Bob has a lower random number (1) than Ann (2) or Carol (3). Bob gets the pizza.

• Ann and Carol get nothing in this round.

• The objects that are assigned are denoted in bold in the table below.

Ann Bob Carol Dave

1st choice Pizza Pizza Pizza Pretzels

2nd choice Pretzels Chips Chips Soda

3rd choice Chips Soda Pretzels Chips

4th choice Soda Pretzels Soda Pizza

Round 2

• Only Ann and Carol participate in Round 2. The remaining objects are the Chips and

the Soda.

• The computer considers Ann and Carol’s second choices.

• Carol’s second choice is the chips. Carol receives the chips.

• Ann’s second choice is the pretzels, but the pretzels were already taken by Dave in round

1.

39



• Ann does not receive anything in this round.

Ann Carol

1st choice Pizza Pizza

2nd choice Pretzels Chips

3rd choice Chips Pretzels

4th choice Soda Soda

Round 3

• Only Ann remains. The computer considers Ann’s third choice.

• Ann’s third choice is the chips, but the chips were already taken by Carol in Round 2.

• Ann receives nothing in this round.

Ann

1st choice Pizza

2nd choice Pretzels

3rd choice Chips

4th choice Soda

Round 4

• Only Ann remains. The computer considers Ann’s fourth choice.

• Ann’s fourth choice is the soda.

• Ann receives the soda.

Ann

1st choice Pizza

2nd choice Pretzels

3rd choice Chips

4th choice Soda

Procedures:

During the procedure, all you must do is submit one list ranking all of the objects.

The computer will take everyone’s list and determine assignments in each round based on the

rank lists following the above procedure, breaking ties using the randomly assigned numbers.

After you are allocated your object, we will ask whether you want to keep the object

or exchange it for various amounts of money using the exact same procedures as

in Phase I.

Earnings:

If this phase is selected for payment the computer will randomly select rows just as in Phase

I to determine if you will keep the object allocated to you by the procedure or the amount of

money.
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Practice:

We will now hand out a worksheet with another example of the procedure. Please work

through the worksheet and raise your hand when you are finished. We will come over and check

your work and help you if there are any mistakes.

Then, there will be an 8 minute practice period on the computer. The practice period will

allow you to practice allocating 5 objects to 5 people. You can submit a ranking list and the

computer has robots who submit the other 4 ranking lists. While you will not know the random

ordering in the actual procedure when you submit your rank list, this practice will allow you to

simulate what you would have gotten if you had submitted different lists. You can experiment

with different rank lists as many times as you like for the randomly selected picking order. You

can also generate a new random picking order, and experiment further.

For the practice round, we recommend that you first think about the order in which you

would actually prefer the objects, and take note of the outcome you get for each possible list

you try.

We are doing this practice because you will only submit your ranking list once for the actual

experiment and we want to make sure everyone fully understands the procedure before we

continue to the actual experiment. You do not earn anything for the practice.
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(a) First Screen

(b) Second Screen

Figure 2: Value Elicitation Screen Shots
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